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I. Introduction

The purpose of this memorandum is to present the
environmental impacts and the approach used to estimate the
impacts for regulatory alternatives that were developed for the
national emissions standards for hazardous air pollutants
(NESHAP) for pesticide active ingredient (PAI) production. The
environmental impacts that were estimated include (1) primary air
impacts; (2) secondary impacts, including air, water, and solid
waste; and (3) fuel and electricity impacts. The impacts are
presented for each of the five emission source types or "planks"
(i.e., process vents, equipment leaks, storage tanks, wastewater
systems, and bag dumps and product dryers).

II. Basis for Impacts Analysis

Regulatory alternatives (including the maximum achievable
control technology [MACT] floor) for existing sources are
described in detail in the MACT floor and regulatory alternatives
memorandum. In summary, the MACT floor was developed for all
five emission source types; one additional regulatory alternative
was developed for storage tanks, wastewater systems, and
equipment leaks; and two additional regulatory alternatives were
developed for process vents. Impacts were estimated for the MACT
floor and all regulatory alternatives. The emissions and the
model plants for each plank are described in the_Data Summary,
Model Plant, and Baseline Emissions memoranda.<’=’

To comply with the regulatory alternatives for gaseous
organic HAP emissions from process vents, this analysis assumes
that PAI facilities would use thermal incinerators to control
organic HAP emissions from dilute streams; control of
concentrated streams was assumed to be achieved with refrigerated
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condensers. Water scrubbers (gas absorbers) were assumed to be
used to control hydrochloric acid (HCl) emissions from process
vents. Compliance with the regulatory alternatives for storage
tanks was assumed to be achieved with the installation of
internal floating roofs (IFR) for tanks with capacities greater
than or equal to 76 m3 (20,000 gallons) and condensers for tanks
with smaller capacities. Compliance with regulatory alternatives
for wastewater systems was assumed to be achieved with steam
strippers. Compliance with the regulatory alternatives for
equipment leaks was assumed to be achieved by implementing a leak
detection and repair (LDAR) program. Fabric filters were assumed
to be used to control particulate matter from bag dumps and
product dryers. Emissions from bag dumps and product dryers are
already controlled to the level required by the MACT floor; there
are no environmental impacts associated with implementation of
the requirement for bag dumps and product dryers.

ITTI. Primary Air TImpacts

Primary air impacts consist of the reduction in HAP
emissions from the baseline level that is directly attributable
to the regulatory alternative. The primary air impacts for each
emission source type under each regulatory alternative are shown
in Table 1.

TABLE 1. SUMMARY OF PRIMARY AIR IMPACTS FOR MACT FLOOR AND
REGULATORY ALTERNATIVES

Emission reduction from baseline

MACT floor, Regulatory Regulatory
Emission source type Mg/yr alternative 1, Mg/yr alternative 2, Mg/yr
Process vents
- Organic HAP’s 616 714 966
- HCt 458 458 567
Equipment leaks 0 3,020 N/A
Storage tanks 10.5 20.0 N/A
Wastewater systems 0 934 N/A
Bag dumps and product 0 N/A N/A
dryers

A. Process Vents

Primary air impacts for process vents at the MACT floor are
616 Mg/yr organic HAP emissions and 458 Mg/yr for HCl emissions.
Primary impacts for organic HAP and HCl emissions under
regulatory alternative 1 are 714 Mg/yr and 458 Mg/yr,
respectively. Under regulatory alternative 2, the primary
impacts are 966 Mg/yr for organic HAP emissions and 567 Mg/yr for
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HCl emissions. Impacts for each process were estimated based on
the difference between the baseline control level for the process
and the control level required by the MACT floor or the
regulatory alternative. The impacts for each process under each
regulatory alternative are shown in Attachment 1.

B. Equipment ILeaks

Primary air impacts for equipment leaks at the MACT floor
are 0 Mg/yr because the MACT floor is no control. Primary
impacts under regulatory alternative 1 are 3,020 Mg/yr. The EPA
protocol document for estimating equipment leak emissions
presents control effectiveness values for components that are
controlled using the LDAR program in the HON. These values were
applied to the baseline emissions for 14 individual processes
where the component counts were known and to the batch and
continuous model component counts for other processes. Details
of this analysis are presented in Attachment 2.

C. Storage Tanks

The primary air impacts for storage tanks under the MACT
floor are 10.5 Mg/yr for HAP emissions. Under regulatory
alternative 1, HAP emissions would be reduced by 20.0 Mg/yr. The
control levels and associated applicability cutoffs for the floor
and regulatory alternative were applied to the 82 surveyed tanks
and the 238 modelled tanks to estimate the HAP emission reduction
achieved. The emissions for each of the tanks are provided in
Attachment 3.

D. Wastewater Systems

The primary air impacts for wastewater at the MACT floor
are 0 Mg/yr (the floor is no control). Primary impacts under
regulatory alternative 1 are 934 Mg/yr. These impacts were
calculated for the 30 wastewater streams nationwide with process
wastewater streams that mget the applicability cutoffs for the
regulatory alternative.l: Details of this analysis are shown in
Attachment 4.

E. Bag Dumps and Product Dryers

Primary air impacts for the bag dumps and product dryers at
the MACT floor are 0 Mg/yr; emissions from this source type are
already controlled to the MACT floor level.

IV. Secondary Environmental Impacts

Secondary environmental impacts consist of any adverse or
beneficial environmental impacts other than the primary impacts
described in Section III. The secondary impacts are indirect or
induced air, water, or solid waste impacts that result from the
operation of the control system that controls HAP emissions. Use
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of most of the control systems described in Section II of this
memorandum will cause secondary air impacts; secondary water and
solid waste impacts, however, are expected to be minimal. The
secondary environmental impacts for both the surveyed plants and
the modelled plants were based on the use of models to represent
actual emission source types (i.e., site-specific impacts were
not estimated for the surveyed plants). The secondary air,
water, and solid waste impacts are discussed in the sections
below.

A. Secondary Air Impacts

Secondary air impacts consist of: (1) generation of
emissions as the byproducts of fuel combustion needed to operate
control devices, and (2) reductions in emissions of VOC
compounds. These secondary air impacts are discussed below.

Fuel combustion is necessary to maintain operating
temperatures in incinerators, to produce steam for steam
strippers, and to generate electricity for operating fans, pumps,
and refrigeration units. Byproducts of fuel combustion include
emissions of carbon monoxide (CO), nitrogen oxides (NO,.), sulfur
dioxide (802), and PM less than 10 microns in diameter (PMlo)'

Steam was assumed to be generated in small, natural
gas-fired industrial boilers. Incinerator control devices also
use natural gas as the auxiliary fuel. The estimated natural gas
consumption rates are described in Section V. Emissions from
combustion in both the boilers and incinerators were estimated
using AP-42 emission factors for small industrial boilers.

Electricity was assumed to be generated at coal-fired
utility plants built since 1978. The estimated electricity
requirements, and the fuel energy needed to generate this
electricity, are described in Section V. Utility plants built
since 1978 are subject to the new sourcg performance standards
(NSPS) in subpart Da of 40 CFR part 60. These NSPS were used to
estimate the PM;, and SO, emissions from coal combustion. The
NO, emissions were estimated using the AP-42 emission factor
because the emission factor is lower than the level required by
the NSPS.8 The CO emissions were estimated using the AP-42
emission factor because CO emissions are not covered by the
NSPS. The sulfur content of the coal was assumed to be
1.8 percent.

A summary of the estimated secondary air impacts that are
generated for each of the five emission source types is presented
in Table 2. Secondary air impacts are generated from operation
of thermal incinerators, condensers, and scrubbers for process
vents, condensers for storage tanks, and steam strippers for
wastewater streams. There is no generation of secondary air
impacts associated with the use of floating roofs to control
emissions from storage tanks or with the implementation of an
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LDAR program to control equipment leaks. In addition, no
secondary air impacts result from control of bag dumps and
product dryers because the MACT floor control level is equivalent
to baseline control. The secondary air impact calculations for
each type of emission source is provided in Attachment 5.

In addition to the generation of emissions from fuel
combustion for the operation of control devices, secondary air
impacts also include the reduction of VOC emissions. This
reduction in VOC emissions includes reduction of: (1) non-HAP
VOC emissions and (2) HAP compounds that are also VOC compounds.
The VOC compounds are precursors to ozone. The reduction of VOC
achieved by the MACT floor and regulatory alternatives can not be
quantified.

B. Secondary Water Impacts

Secondary water impacts consist of wastewater blowdown from
water scrubbers used to control HCl emissions from process vents.
Wastewater from HCl scrubbers is estimated to increase by
10.8 million liters per year (2.86 million gallons per year).

The amount of wastewater generated from each model scrubber is
estimated in the design and cost algorithms for scrubbers used
with each model process; these algorithms are included in the
cost impacts memorandum. A summary of the wastewater impacts is
provided in Table 3.

TABLE 3. WASTEWATER IMPACTS FROM HCL SCRUBBERS

Increase in Nationwide increase in
wastewater Number wastewater
flowrate, of flowrate,
Model gal/yr/scrubber models gal/yr
2d 222,789 5 1,113,947
2¢C 133,632 2 267,263
44 307,158 4 1,228,631
ac 249,895 1 249,895
Total 2,860,000

To simplify the analysis, one approach was used to estimate
the amount of increased scrubber blowdown for the MACT floor and
both regulatory alternatives. This approach assumes that all of
the HC1l in the gas stream is neutralized and the maximum
acceptable dissolved solids Soncentration in the circulatory
water is 10 weight percent.1 As a result, the estimated
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increase in scrubber blowdown is the same under the MACT floor
and both regulatory alternatives. This approach may overestimate
the increase in wastewater under the MACT floor and Regulatory
Alternative 1 by up to 30 percent because the baseline control
level is 80 percent, and the HC1l control level under the MACT
floor and Regulatory Alternative 1 is 94 percent, not

100 percent. However, the difference is likely to be less than
30 percent because it is expected that most controls used to
achieve the required 94 percent reduction for the floor and
Regulatory Alternative 1 will actually have much higher control
efficiencies. Similarly, the increase in scrubber blowdown under
Regulatory Alternative 2 may be overestimated by as much as 5
percent because the HCl control efficiency under regulatory
alternative 2 is 99 percent.

The volume of wastewater generated would also increase at
plants that choose to use a water scrubber to control certain
water soluble organic HAP’s; this volume was not estimated
because the use of water scrubbers is expected to be uncommon.

C. Secondary Solid Waste Impacts

Solid waste impacts are expected to be minimal. Captured
PM HAP emissions from bag dumps and product dryers are expected
to be either raw material or product that would be returned to
the process. At some plants, the overheads from a steam stripper
(i.e., the mixture of steam and volatilized organic compounds)
may be a waste that needs to be disposed of. Other plants,
however, may be able to condense the overheads and return the
condensed material to the process as either raw material or fuel.
Thus analysis assumes the waste costs at some plants are balanced
by the savings at other plants.

V. Energy Impacts

Energy impacts consist of the fuel usage and electricity
needed to operate control devices that are used to comply with
the regulatory alternatives. The estimated electricity and fuel
impacts for each of the five emission source types are presented
in Table 4. In each case, the impacts are based on the total
amount of electricity or fuel needed to operate the control
devices; electricity and fuel needs for existing controls are
assumed to be negligible. The energy impacts, like the secondary
impacts, were based on the use of models to represent both the
surveyed plants and the modelled plants. The electricity and
fuel impacts are estimated in the cost algorithms for control
devices developed for each of the models§ these algorithms are
included in the Cost Impacts memorandum. The tables in
Attachment 5 provide the estimated electricity and fuel impacts
for each of the models and the nationwide impacts. The
electricity and fuel impacts are discussed in the sections below.
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A. Electricity

Electricity would be needed to operate control devices used
to control emissions from process vents, small storage tanks, and
wastewater systems. As noted above, electricity was assumed to
be generated in coal-fired boilers at utility plants. The amount
of fuel energy required to generate the electricity was estimated
using a heating value of 14,000 Btu/lb of coal and a power plant
efficiency of 35 percent.

Specifically, electricity would be needed to operate the
fans for incinerators, scrubbers, and condensers; the
refrigeration unit for condensers; and pumps for scrubbers,
condensers, and steam strippers. The power requirements for
these devices were estimated using procedures in the OAQPS
Control Cost Manual.ll No additional electricity would be needed
to operate floating roofs for storage tanks or to implement an
LDAR program for equipment leaks. In addition, no additional
electricity is needed to control emissions from bag dumps and
product dryers because the MACT floor is equivalent to baseline.

B. Fuel

Fuel would be needed to operate incinerators and to
generate steam for steam strippers. In both cases, natural gas
was assumed to be the fuel of choice. No additional fuel would
be needed to operate condensers for process vents, to operate
condensers or floating roofs for storage tanks, or to implement
an LDAR program for equipment leaks. In addition, no fuel would
be needed to control emissions from bag dumps and product dryers
because the MACT floor is equivalent to baseline. The fuel
requirements for each control device are included in the control
device cost_algorithms, which are attachments to the Cost Impacts
memorandum.

The amount of natural gas needed in incinerators was
estimated using mass and energy balances around the incinerators.
The operating temperature was assumed to be 1600°F. Energy
losses were assumed to be equal to 10 percent of the total energy
input. Additional details on the procedure are described in the
OAQPS Control Cost Manual.l

Steam strippers for wastewater streams were designed with
an assumed wastewater-to-steam ratio of 10.4:1. The steam was
assumed to be at 350°F and 100 psia. The enthalpy change was
estimated to be 1,180 Btu per pound of steam, assuming the feed
water to the boiler is at 50°F. The energy required to generate
the steam was estimated assuming a boiler efficiency of
80 percent. The quantity of natural gas needed to supply the
energy was estimated assuming the heating value of natural gas is
1,000 Btu per standard cubic foot.
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PAC NESHAP FILE: PROJECT\AGCHEMS\PVENTS\ATTSEQN.XLS
Process Vents - Secondary Air Environmental Impacts
21-Apr-97

The electricity and natural gas requirements for each of the models are based on the control device design algorithms that are
discussed in the Cost Impacts Memorandum. See sections V.A and B for discussions of electricity and fuel calculations

and section IV.A for discussion of emission factors used to estimate secondary air impacts from fuel combustion.
EXAMPLE MODEL 1D:

Calculate amount of coal burned to generate electricity required, assuming 35 percent heat to energy conversion:

2,666,070 Kw-hr/yr x 3,412 Btu/Kw-hr / 14,000 Btu/Ib coal / 2, 000 Ib coal/ton coal / 0.35 = 928 tons coal/yr

Calculate amount of coal Btu's burned to generate electricity required, assuming 35 percent heat to energy conversion:

2,666,070 Kw-hr/yr x 3,412 Btu/Kw-hr / 0.35 = 25,990,373,829 Btu/yr

Emissions of CO:
928 ton coal/yr x 5 1b CO/ton coal / 2204 Ib/Mg + 372,673,584 scf nat. gas x 35 Ib CO/1076 scf nat. gas / 2204 Ib/Mg = 8.03 Mg CO/yr

Emissions of NOx:
928 ton coal/yr x 13.7 Ib NOx/ton coal / 2204 Ib/Mg + 372,673,584 scf nat. gas x 140 Ib NOx/10"6 scf nat. gas / 2204 Ib/Mg = 29.5 Mg NOx

Emissions of SO2:
First, convert the emission factor: 1.2 Ib $02/10"6 Btu x 14,000 Btu/lb coal x 2,000 Ib coal/ton coal = 33.6 Ib SO2/ton coal
928 ton coal/yr x 33.6 Ib SO2/ton coal / 2204 Ib/Mg + 372,673,584 scf nat. gas x 0.6 Ib SO2/10"6 scf nat. gas / 2204 Ib/Mg = 14.3 Mg SO2/y

Emissions of PM:
First, convert the emission factor: 0.03 Ib SO2/10"6 Btu x 14,000 Btu/lb coal x 2,000 1b coal/ton coal = 0.84 Ib SO2/ton coal
928 ton coal/yr x 0.84 Ib PM/ton coal / 2204 1b/Mg + 372,673,584 scf nat. gas x 6.2 Ib PM/10"6 scf nat. gas / 2204 Ib/Mg = 1.40 Mg PM/yr

Conversion Data:

Utility Plant NSPS 3,412 Btu/Kw-hr
Subpart Da, 40 CFR part 60 14,000 Btu/lb coal
1000 Btu/scf nat gas
1.2 1b SO2/10"6 Btu (controlled) 1.80 % sulfur in coal
0.03 Ib PM/10"6 Btu (controlled) 35% pp eff.

AP-42 Emission factors

5 Ib CO/ton coal
13.7 1b NOx/ton coal

35 1b CO/10°6 fi3 nat. gas (unc.):
140 1b NOx/10°6 fi3 nat. gas (unc.):
6.2 1b PM/10°6 fi3 nat. gas (unc.):

. 0.6 1b SO2/10"6 ft3 nat. gas (unc.):




PAC NESHAP FILE: PROJECT\AGCHEMS\PVENTS\ATTSWWEQ.XLS

Wastewater - Energy Impacts

15-Jul-97

The electricity and natural gas requirements are based on the control device design algorithms that are

discussed in the Cost Impacts Memorandum. See sections V.A and B for discussions of electricity and fuel calculations
and section IV.A for discussion of emission factors used to estimate secondary air impacts from fuel combustion.

The secondary air impacts are calculated by the same method as for process vents.

EXAMPLE:

Calculate the actual steam used for stripping HAP from wastewater:

148,000,000 gal H20/yr x 8.33 Ib/gal H20 / 10.4 Ib water/Ib steam = 118,542,308 Ib steam

Calculate the energy needed to generate the steam required, assuming 80 percent boiler efficiency:

148,000,000 gal H2O/yr x 8.33 Ib/gal H20 / 10.4 1b water/lb steam x 1,180 Btu/Ib steam / 0.80 = 174,849,903,846 Btu/yr

Calculate the amount of natural gas required to generate steam required:

174,849,903,846 Btu/yr / 1,000 Btu/scf nat gas = 174,849,903.8 scf nat. gas

Calculate amount of electricity required to run the strippers, assuming 64 percent pump efficiency:

148,000,000 gal H20/yr x 122 ft H20 x 8.33 Ib/gal H20 / 0.00182 hp-s/ft-1b / 3600 sec/hr x 0.7457 kW/hp / 0.64 = 88,503 kW-hr/yr

Calculate amount of coal required to generate electricity required, assuming 35 percent heat to energy conversion:

88,503 Kw-hr/yr x 3,413 Btu/Kw-hr / 14,000 Btu/Ib coal / 2,000 Ib/ton / 0.35 = 30.82 tons coal/yr

Conversion Data:

Utility Plant NSPS 3,412 Btu/Kw-hr
Subpart Da, 40 CFR part 60 14,000 Btu/lb coal
1000 Btu/scf nat gas

1.2
0.03

Ib SO2/10"6 Btu (controlled)
Ib PM/1076 Btu (controlled)

AP-42 Emission factors

S 1b CO/ton coal
13.7 1b NOx/ton coal
35 1b CO/1076 ft3 nat. gas (unc.)
140 1b NOx/10°6 ft3 nat. gas (unc.)
6.2 1b PM/1076 ft3 nat. gas (unc.)
0.6 1b SO2/10"6 fi3 nat. gas (unc.)

1.80 % sulfur in coal
35% pp eff.
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PAINESHAP FILE: PROJECNAGCHEMS\WW_IMPX\ENV_IMP2.XLS

Wastewater Environmental Impacts
30-Apr-97

Nationwide WW flow
Total gallons ww/yr:

L/v:

Total Mg HAP controlled:

Total gallons ww/yr:

Liv:

Total Mg HAP controlled:
Reflux Ratio (L/D):

Total quantity of H20

(ww + reflux):
Impacts:

Electricity required to run strippers, kw-hrfyr
(if biotreatment considered):

(if biotreatment not considered):

Energy required to generate electricity (Btufyr)
(if biotreatment considered):
(if biotreatment not considered):

Blectricity (Kw-hr/yr)
(if biotreatment considered):

(if biotreatment not considered):

Actual Steam used (1bfyr)
(if biotreatment considered):
(if biotreatment not considered):

Energy required to generate steam (Btufyr)
(if biotreatment considered):

(if biotreatment not considered):

Solid Waste (Mg/fyr)
(if biotreatment considered):
(if biotreatment not considered):

Mg COfyr
(if biotreatment considered):
(if biotreatment not considered):

Mg NOxfyr
(if biotreatment considered):
(if biotreatment not considered):

Mg PM-10/yr
(if biotreatment considered):
(if biotreatment not considered):

Mg SO2/yr
(if biotreatment considered):
(if biotreatment not considered):

148,000,000
10
935.00

0

0
1,517.34

5

148,000,000

88,503

88,503

863,026,894
863,026,894

252,865

252,865

118,542,308

118,542,308

174,849,903,846
174,849,903,846

935 (0 if returned to process)
935 (0 if returned to process)
Uncontrolled Controlled

2.85

2.85

11.31

11.31

0.18 0.012

0.18 0.012

0.96 0.85

0.96 0.85

Density H20 (Ib/gal):

hoursfyear:

pump efficiency:

hp:

Kw-hr:

ft H20:

power plant efficiency:
hp-s/ft-1bf

steam (Btu/lb):
boiler efficiency:
scf nat. gas
Ibmole nat. gas
Ibmole CH4
Ibmole CH4

CO emission factor (1b/ton coal):

CO emission factor (1b/106 ft3 nat gas):
Btu/lb coal:

b CO/lbmole CO

NOx emission factor (Ib/ton coal):
NOx emission factor (Ib/1O76 ft3 nat gas):
1b NOx/lbmole NOx

PM-10 unc. emission factor (Ib/ton coal):

PM cont. emission factor (Ib/ton coal):

SO2 unc. emission factor (Ib * %S/ton coal):

SO2 cont. emission factor:
% Sulfur:

8.33
8,760

64.00%
0.7457 Kw
3413 Btu
122
35.00%
0.00182

1180
80.00%
1,000 Btu
392
0.004 Ibmole CO
0.001 Ibmole NOx

35
14,000
28

13.7
140
46

13.2
0.84

38
33.6
1.80






MIDWEST RESEARCH INSTITUTE
Suite 350
401 Harrison Oaks Boulevard

Cary, North Carolina 27513-2412
Telephone (919) 677-0249
FAX (919) 677-0065

Date: April 30, 1997

Subject: Cost Impacts of Regulatory Alternatives for the PAI
Production NESHAP
EPA Contract 68D60012; Work Assignment No. 004
ESD Project No. 93/59; MRI Project No. 4800-04

From: Karen L. Schmidtke
David D. Randall

To: Lalit Banker
ESD/OCG (MD-13)
U. S. Environmental Protection Agency
Research Triangle Park, NC 27711

I. Introduction

This memorandum presents the estimated cost and cost
effectiveness of techniques to control missions from the five
emission source types in the pesticide active ingredient (PAI)
industry. The five emission source types are process vents,
storage tanks, equipment leaks, wastewater, and bag dumps and
product dryers. Costs were estimated for techniques likely to be
used to control emissions to the maximum achievable control
technology (MACT) floor control level and, for some emission
source types, to the control level for one or two regulatory
alternatives.

The MACT floor and regulatory alternatives for existing and
new source process vents, equipment leaks, storage tanks,
wastewater, and bag dumps and product dryers are provided in the
MACT Floor and Regulatory Alternatives memorandum.® In addition,
the baseline emissions and the hazardous air pollutant (HAP)
emission reductions achieved by the standards are provided in the
Baseline Emissions memorandum and the Environmental Impacts
memorandum, respectively.“’

Costs were developed for a variety of control techniques.
For process vents, costs were developed for three types of add-on
control devices (incinerators, condensers, and gas absorbers).
For storage tanks, costs were developed for condensers and
internal floating roofs (IFR). For wastewater, costs were
developed for steam strippers an offsite disposal as a hazardous
waste. For equipment leaks, costs were developed for
implementation of a leak detection and repair (LDAR) program. No
costs were developed for bag dump and product dryer controls
because noéyodel plants were developed.
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This memorandum contains four sections. Section II
presents a discussion of the cost analysis for each of the
emission source types for existing sources. Section III presents
the cost analysis for each emission source type for new sources.
Section IV provides references.

II. Description of Cost AnalvsisAfor Existing Sources

A. Standard/Common Costs

Each of the cost analysis discussions in paragraphs B
through F below includes specific information that details the
assumptions and methodology used in costing control devices for
each emission source type. Some of the assumptions are common to
each cost analysis and are summarized in this paragraph.

In estimating the total capital investment (TCI) for
control device equipment, the equipment costs were based on data
from various years and must be scaled to represent cost in the
current year. All equipment costs were scaled to June 1995
dollars. Purchased equipment costs (PEC) generally include the
control device and auxiliary equipment costs, instrumentation
costs, sales tax, and freight costs. Costs for instrumentation
(10 percent), sales tax (3 percent), and freight (5 percent) were
estimated to be 18 percent of control device and auxiliary
equipment costs.

Several components of the annual costs are common for the
control devices. These common costs include direct annual costs
such as labor wages and maintenance costs, utilities, raw
materials, and waste treatment. Common costs for indirect annual
costs include overhead, administrative charges, property taxes,
insurance, and capital recovery factors. These are listed in
Table 1. Control equipment was assumed to operate 8,760 hours
per year (hr/yr) for storage tanks and batch processes and
5,000 hr/yr for continuous processes.

B. Process Vents at Existing Sources

Emission control costs were developed for the MACT floor
and two regulatory alternatives more stringent than the MACT
floor. For this analysis, the estimated 167 processes in the
industry with uncontrolled emissions equal to or greater than the
regulatory applicability cutoffs were each characterized with one
of eight model processes. Eight model processes were developed
to represent the industry: four with diluted emission streams
and four with concentrated emission streams. Control device
costs for process vents were developed for three control devices:
incinerators, condensers, and water scrubbers.

The MACT floor cost and cost effectiveness for each model
process are shown in Attachment A. For the MACT floor, control
device costs for diluted emission streams containing organic HAP



TABLE 1.

COMMON ASSUMPTIONS FOR ANNUAL COST CALCULATIONS

Parameter/Factor

Direct Annual Costs

Operator labor wage rate (except steam stripper)

$15.64 per hour

Operator labor wage rate (steam stripper)

$22.50 per hour

Maintenance labor wage rate

$17.21 per hour

Supervisor labor cost

15 percent of Operator labor cost

Maintenance materials cost

100 percent of Maintenance labor cost

Operator labor time requirements

0.5 hours per 8 hours operation

Maintenance labor time requirements

0.5 hours per 8 hours
operation

Utilities
Electricity
Water
Natural gas
Caustic
Wastewater treatment

$0.059 per kW-hr
$0.20 per 1,000 gallons
$3.30 per 1,000 scf
$300 per ton

$3.80 per 1,000 gallons

Indirect Annual Costs

Overhead

60 percent of all labor and maintenance material
costs

Administrative, Property taxes, and Insurance

4 percent of TCI

Capital recovery factor for IFR, Incinerators,
Manifolds, Condensers, Equipment leak
components, and Initial LDAR labor

10-year equipment life at 7 percent interest rate
(CRF = 0.1424)

Capital recovery factor for Scrubbers and Steam
strippers

15-year equipment life at 7 percent interest rate
(CRF = 0.1098)

Capital recovery factor for Equipment leaks
monitoring instrument

6-year equipment life at 7 percent interest rate
(CRF =0.21)

Capital recovery factor for Equipment leaks
rupture seals and pump seals

2-year equipment life at 7 percent interest rate
(CRF = 0.55)
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were based on incinerators, and costs for concentrated emission
streams with organic HAP were based on condensers. Condenser
costs were based on condensers that achieve a 90 percent control
level for organic HAP; the organic HAP emission reduction
achieved by the condenser control device is also based on the
floor control level of 90 percent. While the floor requires
organic HAP control of 90 percent, the incinerator costs were
developed based on incinerators that achieve 98 percent control
efficiency and the organic HAP emission reduction achieved by the
control device was based on the 98 percent reduction.

The MACT floor requires 94 percent reduction of hydrogen
chloride (HCl) emissions. Costs for a water scrubber to control
HCl emissions were developed for process vent models 2D, 2C, 4D,
and 4C. While the floor requires 94 percent reduction of HC1
emissions, the scrubber costs were developed for a device that
achieves 99 percent control efficiency, and the emission
reduction achieved by the device was based on 99 percent control.

The cost and cost effectiveness for the regulatory
alternatives are shown in Attachment A. Twenty-three of the
streams represented by models 1C, 2D, 2C, 3C, 4C, and 4D are
subject to more stringent control levels for organic HAP under
Regulatory Alternative 1, and the costs to control these streams
are provided in the Attachment. For Regulatory Alternative 1,
the cost to control models with incinerators is equivalent to the
cost estimated for the floor. The cost to control models with
condensers is equivalent to the floor costs for all models except
those subject to more stringent control requirements for organic
HAP; the incremental increase in cost for these models is due to
the increase in control efficiency required by the device.
Regulatory Alternative 1 costs for scrubbers to control HC1
emissions are identical to floor costs.

Regulatory Alternative 2 requires more stringent control
than the floor for both organic HAP and HCl emissions. The cost
and cost effectiveness data for Regulatory Alternative 2 are
provided in Attachment A for each model. The cost to control
models with incinerators is equivalent to the cost for both the
floor and Regulatory Alternative 1. There is an incremental
increase in cost for 49 streams represented by models controlled
with condensers and that are subject to a more stringent control
requirement for Regulatory Alternative 2 than Regulatory
Alternative 1 (models 1C, 2C, 3C, and 4C). The cost for
99 percent emission reduction of HCl required by Regulatory
Alternative 2 is equivalent to the cost estimated for the floor
and Regulatory Alternative 1.

A The nationwide costs and actual cost effectiveness of the
MACT floor and regulatory alternatives are shown in Table 2. The
incremental cost effectiveness for requiring control levels above
the stringency of the MACT floor and the incremental cost
effectiveness between the regulatory alternatives are also



38 s9sse00id Surpnpout ‘Ansnpul o3 Ul sasseood [re jueserdar 0y sessevosd fopowr

*SoNI[IoB] PoASAINS oY)

O 9sn dYj) U0 paseq dJe SISAJEUE SIY) Ul §}SO0 PUB SUOISSID I,

T 'ON
QATIBUIS) Y
009°ST 69 SLE'T 000°0TT‘SE | 000°06€°6S 9661 07591 Arope[n3oy
000‘P1
I 'ON
QANRIINY
09¥°9C ¥9 182°1 000°0T6°€€ 000°0ZT‘9S 966°1 0zs‘91 Axorem3oy
006°C
0TE'LT 9 9€T1 000°08L €€ 000°01L‘SS 966°1 0zs 91 Jooy LOVIN
3N/$ 3N/$ % ILBN 1K/$ $ KB IK/8N uondo
‘SSOURAT)ORJJo ‘ourfeseq ‘ourreseq ‘ourjeseq ‘OV.L ‘OL ‘SUOISSIID ‘SUOISSTWIR
1502 0) aAnE[al WIOIJ UONONPAX | WOJJ UONOonpal |  apiMuUoneN SpIMuoneN surpeseq Ppaljonuoou}
[BIUSIISIOU] | SSOUSAOS)Jo uorssTuy uolsstuyg
150D

JAIMNOILUN SHAIILVNYHLIV XAJOLVTINODOHY ANV JOOTA LOVW INHA SSHDOMUd

eSHOYUNOS ODNILSIXH ¥0d SLSOD

‘2 HTIVY.L




6

provided. The cost effectiveness (from baseline) for Regulatory
Alternatives 1 and 2 are $26,500 per megagram (/Mg) and
$25,600/Mg, respectively. The incremental cost effectiveness
from the floor to Regulatory Alternative 1 is $2,900/Mg, and the
incremental cost effectiveness from Regulatory Alternative 1 to 2
is $14,000/Mg.

Example design and cost algorithms for the three control
devices are presented in Attachment A. The assumptions and data
used in each algorithm are described below.

1. Condenser. The refrigeration unit size (tons of
cooling) is based on an energy balance around the unit when the
process 1s venting and the inlet stream contains its maximum HAP
load. Costs were developed for packaged, multiple-stage
refrigeration units using the approach in the Office of Air
Quality Planning and Standards (OAQPS) Control Cost Manual.®
This approach estimates that the refrigeration unit cost is
80 percent of the refrigeration system equipment cost. The
remaining 20 percent of the system cost includes the HAP
condenser, recovery tank, connections, piping, and
instrumentation.

The PEC for the refrigeration system is equal to the total
equipment cost plus 8 percent for sales tax and freight. The
installation cost for the refrigeration system is equal to the
PEC for the system plus 15 percent.

The manifolding equipment cost was estimated for venting
one process with a total of 6 vents to the condenser. The number
of vents per process was based on the average from the surveyed
plants.4 The manifold equipment cost includes the cost of one
automatic damper, 300 feet of duct designed to convey exhaust gas
at 2,000 feet per minute, twelve elbows, and six detonation
arrestors. The PEC for the manifold is equal to the manifold
equipment cost plus 18 percent for instrumentation, taxes and
freight. The installation cost for the manifold is assumed to be
equal to the PEC for the manifold.

The cost to conduct an initial compliance test to
demonstrate the efficiency of the condenser is estimated to be
$24,420.° The cost for a thermocouple and datalogger to monitor
the exi% stream temperature from the condenser is estimated to be
$3,000.

The TCI is equal to the sum of the PEC for the
refrigeration system, PEC for the manifold, installation cost of
the refrigeration system, installation cost of the manifold, cost
for the performance test, and cost for a thermocouple and
datalogger.

The total annual cost (TAC) for the condenser consists of
direct annual costs and indirect annual costs. Direct annual
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costs are costs for labor, maintenance materials, and utilities
(electricity). Indirect annual costs are costs for overhead,
administrative charges, property taxes, insurance, and capital
recovery. Except for electricity requirements, the unit costs
and other factors used to estimate these costs are given in
Table 1.

Electricity requirements for the refrigeration unit were
estimated using the tabulated data in the OAQPS Control Cost
Manual.® Linear regression was used to develop an equation for
electricity requirements per ton of cooling as a function of the
condenser temperature. The mechanical efficiency of the
compressor was estimated to be 85 percent. Electricity
requirements for pumps and blowers were considered to be
negligible relative to the requirements for the refrigeration
unit.

2. Incinerator. Costs for thermal incineration units were
calculated for packaged, recuperative incinerators based on the
approach in the OAQPS Control Cost Manual.’ The cost of the
incineration unit is based on the volumetric flowrate of flue gas
exiting the unit. The incinerator unit costs are based on the
assumption that 70 percent of the energy from the incinerator
flue gas is recovered. The incinerator unit cost includes
auxiliary equipment, which includes the stack and collection fan.

The PEC for the incinerator is equal to the total equipment
cost for the incinerator unit and auxiliary equipment plus sales
tax and freight.

Direct installation cost for the incinerator unit and
auxiliary equipment is equal to 30 percent of the incinerator
PEC. These costs are for foundations and supports, handling and
erection, electrical installation, piping installation,
insulation for ductwork, and painting. Indirect installation
costs include engineering, construction and field expenses,
contractor fees, startup, performance test, and contingencies.
The indirect installation cost is equal to 31 percent of the
-incinerator PEC.

The cost to conduct an initial compliance test to
demonstrate the efficiency of the incinerator is estimated to be
$24,420. The cost for a thermocouple and datalogger to monitor
the exit chamber temperature from the incinerator is estimated to
be $3,000.°

The manifold equipment cost was estimated using the same
method that was used for condensers for process vents.

The TCI is equal to the sum of the PEC for the incinerator
plus the direct and indirect installation costs and the sum of
the PEC and the installation cost for the manifolding. The
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compliance test and monitoring equipment costs are initial costs
that were also considered to be part of the TCI.

The TAC consists of direct annual costs and indirect annual
costs. Direct annual costs are costs for labor, maintenance
materials, and utilities (natural gas and electricity). Indirect
annual costs are costs for overhead, administrative charges,
property taxes, insurance, and capital recovery. Except for
natural gas and electricity requirements, the unit costs and
other factors used to estimate these costs are given in Table 1.

Natural gas requirements are based on the amount of
auxiliary fuel necessary to stabilize the incinerator flame and
to maintain the incinerator temperature. Auxiliary fuel
requirements are at a maximum when the process is not venting to
the incinerator; depending on the organic concentration in the
exhaust stream, the auxiliary fuel requirements may be
significantly less when the process is venting. The equations to
calculate the amount_of auxiliary fuel are described in the OAQPS
Control Cost Manual.

Electricity requirements were also estimated using
equations in the OAQPS Control Cost Manual.’ Electricity
requirements were estimated for the fan and motor; the estimate
is based on the volumetric flowrate, pressure drop, and the
combined mechanical efficiency of the fan and motor. The
mechanical efficiency is estimated to be 60 percent.

3. Scrubber. The total equipment cost for the scrubber
system is equal to the sum of the tower cost plus auxiliary
equipment such as packing material and a pump. The scrubber
tower cost is based on the surface area of the unit. Costs were
developed using the approach in the OAQPS Control Cost Manual for
packed tower absorbers made of fiberglass reinforced plastic.

The equipment cost for the scrubber tower includes the tower
shell and numerous equipment components associated with the
tower. The equipment cost of the packing material is based on
use of ceramic Raschig rings at $20 per cubic foot. The
equipment cost of the pump used for circulating water is based on
a cost of $16 per gallon per minute of scrubber water.

The PEC for the scrubber system is equal to the total
equipment cost plus 10 percent for instrumentation and controls
and 8 percent for sales tax and freight.

The TCI is equal to the PEC for the scrubber system plus
the direct and indirect installation costs. The direct
installation costs are equal to 85 percent of the PEC and include
foundations and supports, handling and erection, electrical,
piping, insulation, and painting. Indirect installation costs
include engineering, construction and field expenses, contractor
fees, startup, performance test, and contingencies and are equal
to 35 percent of the PEC.
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The TAC for the scrubber system consists of direct annual
costs and indirect annual costs. Direct annual costs are costs
for labor, maintenance materials, utilities (electricity and
water), purchase of caustic, and wastewater treatment. Indirect
annual costs are costs for overhead, administrative charges,
property taxes, insurance, and capital recovery. Except for
electricity and water requirements, the unit costs and other
factors used to estimate these costs are given in Table 1.

Electricity requirements for the scrubber unit were
estimated using equations in the OAQPS Control Cost Manual.
Electricity requirements were estimated for the pump. The
mechanical efficiency of the pump is estimated to be 70 percent.
The annual amount of water usage was based on the liquid flowrate
necessary for operation of the scrubber plus makeup water. The
annual caustic usage was estimated based on the stoichiometric
amount necessary to neutralize the HCIL.

C. Storage Tanks at Existing Sources

For the cost analysis, the 238 storage tanks in the
industry were each characterized by a model tank. A total of
nine model storage tanks were developed to represent the
industry. Emission control device costs were calculated for the
MACT floor and one regulatory alternative more stringent than the
floor.

The MACT floor control costs were developed for two control
devices: IFR and condensers. Condensers were costed for control
of storage tanks with capacity less than 76 cubic meters (m°)
(20,000 gallons); IFR were costed for storage tanks greater than
76 m> (20,000 gallons). Costs for IFR were used for tanks
greater than 76 m3 (20,000 gallons) because the IFR costs are
less than condenser costs; it was assumed that facilities would
install the least costly control device that meets the control
requirements. Costs were developed for only three of the model
storage tanks. Models 1B, 2B, and 3B are the only models that
meet the MACT floor applicability criteria and are not already
controlled to greater than or equal to 41 percent. The floor
requires HAP emission control of 41 percent, but the IFR achieves
emission reductions of 95 percent and the emission reduction was
based on the 95 percent control efficiency. Condenser costs and
emission reductions were based on condensers that achieve the
floor control level. The costs and cost effectiveness for
control devices for each model tank are shown in Attachment B.

The regulatory alternative control costs were also
developed for IFR and condensers. The resulting costs and cost
effectiveness are shown in Attachment B for each model. The
regulatory alternative requires more stringent control_of storage
tank emissions for tanks greater than or equal to 76 m
(20,000 gallons) (models 2B and 3B). There is no increase in
cost or emission reduction from the floor to the regulatory
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alternative with use of IFR control. There is no change in the
requirements for storage tanks less than 76 m> (20,000 gallons)
for the regulatory alternative and therefore, no change in the
cost or emission reduction (model 1B).

As shown in the regulatory alternative table in
Attachment B, there is no incremental cost effectiveness for
models 2B and 3B. As noted above, the emission reduction
achieved by the IFR for these models is the same under Regulatory
Alterative 1 and the MACT floor. Therefore, the cost for the
regulatory alternative is equivalent to the cost to meet the MACT
floor.

The nationwide costs and cost effectiveness of the MACT
floor and regulatory alternative are shown in Table 3, along with
the nationwide incremental cost effectiveness for the regulatory
alternative above the floor.

A cost algorithm table for the IFR control devices is
presented in Attachment B; the condenser cost algorithm is
similar to the one shown in Attachment A for process vents. The
assumptions and data used in each algorithm is described below.

1. IFR. The cost of an IFR was based on an aluminum
noncontact IFR with vapor-mounted primary seal and secondary
seal. The installed capital costs were based on an equation
relating cost of the floating roof to the diameter of the storage
tank. Initial costs for degassing and cleaning ($150 per foot of
diameter) and sludge disposal (assume 1 percent sludge volume at
$5 per gallon disposal cost) were also estimated. Annual costs
were developed for capital recovery, taxes, insurance,
administration, and operating costs (6 percent of installed
capital and other initial costs).

2. Condenser. The estimated condenser costs for storage
tanks were developed following the same methodology used to
estimate the cost of condensers for process vents. The
refrigeration unit size (tons of cooling) is based on an energy
balance around the unit when the inlet stream contains its
maximum HAP load. Maximum HAP load occurs while filling the tank
(i.e., working losses). Just as for the process vent condensers,
costs were developed for packaged, multiple-stage refrigeration
units using the approach in the OAQPS Control Cost Manual.” The
remainder of the approach is also similar, with only a few
differences detailed below.

No manifolding equipment costs were estimated for control
of storage tanks with condensers. Unlike process vents where
multiple vents are manifolded to the control device, the storage
tank has only one vent. In addition, each storage tank was
assumed to be controlled with a condenser in close proximity to
the tank.
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The direct annual cost, which is part of the total annual
costs, were estimated for full-time operation because this
analysis assumes storage tank condensers will be in service for
8,760 hr/yr.

In estimating the annual cooling load, and thus the
electricity requirements, separate loads were estimated for the
time periods when working losses are vented to the condenser and
when breathing losses are vented to the condenser. The load
during breathing losses is significantly lower than during
working losses. The inputs to the condenser cost algorithm are
shown in Attachment B.

D. Wastewater at Existing Sources

Emission control costs for wastewater were developed for
the MACT floor and one regulatory alternative. The MACT floor is
no control, and the regulatory alternative consists of a variety
of control requirements that can be met using one of several
control techniques.1 Cost impacts for the regulatory alternative
were estimated assuming that all facilities use either a steam
stripper to remove HAP from wastewater, or they dispose of
wastewater as a hazardous waste (which is treated by
incineration). Costs were developed for 22 model wastewater
streams representing a total of 30 wastewater streams nationwide;
the selection of these streams is described in the Model Plants
memorandum.

The total nationwide capital and annual costs, the emission
reduction achieved, and the cost effectiveness of the MACT floor
and the regulatory alternative are presented in Table 4. There
are no cost impacts associated with the MACT floor because the
floor is no control. For the regulatory alternative, it was
assumed that facilities would use the least costly control
technique. Steam stripping was the least costly technique for 21
of the 30 wastewater streams, and hazardous waste disposal was
the least costly for the other 9 wastewater streams. The cost-
effectiveness values for individual streams range from $430/Mg to
$122,000/Mg, and the nationwide average incremental cost
effectiveness of the regulatory alternative is $3,070/Mg.

The estimated capital and annual costs of the control
techniques under the regulatory alternative for each of the
22 model wastewater streams, the emission reduction achieved per
model, the characteristics of each model, and the nationwide
population of each model are provided in Attachment C. An
example cost algorithm for steam strippers and example hazardous
waste cost calculations are also included in Attachment C. The
assumptions and data used to calculate the steam stripper and
hazardous waste disposal costs are described below.

1. Steam stripper system. Costs for steam stripper

systems are based on the approach used for the Hazardous Organic
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NESHAP (HON) wastewater control cost analysis.10 The steam
strippers were designed to achieve the fraction removed (Fr)
value for the HAP in the wastewater stream. In estimating the
size of the steam stripper, it was assumed that the wastewater
flow rate would be equal to the annual flow rate divided by the
annual steam stripper operating hours. The operating hours of
the steam stripper were estimated to be 85 percent of the process
operating hours. The minimum treatment rate was assumed to be

5 gallons per minute (for instances where annual flow rate
divided by operating hours was less than 5 gallons per minute) .
The liquid to vapor ratio was 10.4 pounds of wastewater per
pounds of steam, and the number of theoretical trays was assumed
to be 5. The steam was at 100 pounds per square inch, gauge
(psig) and 350°F. The column flooding rate was assumed to be

80 percent. The wastewater stream enters the feed preheater at
68°F and enters the stripper column at 170°F.

The total equipment cost for the steam stripper system is
equal to the sum of the steam stripper column cost plus the cost
for auxiliary equipment, which includes the wastewater feed tank,
the wastewater preheater, overheads condenser, overheads
decanter, pumps, and a flame arrestor. As in the HON wastewater
cost analysis, the steam stripper column equipment cost was
estimated using the average from two costing approaches. One
costing scenario estimated the cost for the column shell, skirt,
nozzles, manholes, platform, ladder, and trays, and the other
costing scenario estimated the cost for the column shell,
manholes, nozzles, trays, platform, ladder, handrail, and
insulation costs.i

The equipment cost for the feed tank and the overheads
decanter were both estimated based on equations relating tank
capacity to cost. The equipment cost of the overheads condenser
was based on an equation relating the condenser surface area to
cost. Equipment cost for four pumps was estimated from cost
equations relating horsepower and cost. The feed preheater
equipment cost was estimated from an equation relating flow rate
and cggt. The flame arrestor equipment cost was estimated to be
$100.

The PEC for the steam stripper system is equal to the total
equipment cost plus the cost for piping, instrumentation, sales
tax, and freight. Piping cost and instrumentation cost was
estimated to be equal to 30 percent and 10 percent, respectively,
of the equipment cost. Sales tax and freight are equal to
8 percent of the cost for the total equipment, piping, and
instrumentation.

The TCI for all stripper system equipment is equal to the
sum of the PEC for the system and the direct and indirect
installation costs. The direct installation costs are equal to
55 percent of the PEC and include foundation and support,
electrical, erection and handling, painting, and insulation
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costs.1® Indirect installation costs include engineering and
supervision, construction and field expenses, startup and
test%gg, and contingency costs and are equal to 35 percent of the
PEC.

The TAC consists of direct and indirect annual costs.
Direct annual costs are costs for labor, maintenance, and
utilities (steam, electricity, and water). Indirect annual costs
are costs for overhead, administrative charges, property taxes,
insurance, and capital recovery.

2. Hazardous waste disposal costs. The cost for hazardous
waste disposal was based on a unit cost per gallon of wastewater
sent for disposal. Cost for disposal were $0.704 per gallon of
wastewater (or $169.02 per ton of wastewater) .l There are no
capital costs associated with hazardous waste disposal of
wastewater.

E. Eguipment Leaks at Existing Sources

Control costs for equipment leaks were estimated for the
MACT floor and one regulatory alternative. For determining the
cost of the regulatory alternative, the costs to control
equipment leak emissions were estimated for 28 of the surveyed
processes based on actual equipment component counts, operating
hours, and estimated control efficiencies for reported LDAR
programs. The control cost estimates for the 175 modelled
processes are based on a batch equipment leak model and a
continuous equipment leak model; there is no baseline LDAR
program for the models.

The regulatory alternative control costs for equipment leak
emissions are based on the LDAR program of 40 CFR part 63,
subpart H. A cost algorithm similar to the one used to estimate
control costs for subEart H of the HON was used to estimate costs
for the PAI industry. 2 An example cost algorithm for the batch
equipment leak model is presented in Attachment D. The
assumptions and data used in the cost algorithm are described
below.

The control costs for a LDAR program include capital costs
(equipment costs), indirect annual costs (annualized equipment
costs and annualized initial monitoring and repair charges), and
direct annual costs (maintenance, miscellaneous, and labor
charges) .

Equipment costs for each surveyed process and model process
were developed for the monitoring instrument and various parts
used to control emissions. These parts were estimated to cost
$434 for sample connections and $4,176 for pressure relief
devices. The monitoring instrument costs $6,907. The total
equipment cost per model or process is equal to the sum of the
equipment cost for all components.
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The TCC is equal to the sum of the equipment cost for each
component type.

The cost for the initial monitoring of liquid valves, gas
valves, pumps, and connectors is based on the component count, a
monitoring cost of $2.50 per component, plus 40 percent for
administrative charges. The cost for the initial repair is based
on the component count, the initial leak frequency (percentage),
the fraction of components that require repair, the hours
required for each repair, a repair labor cost of $22.50 per hour,
plus 40 percent for administrative and support charges. An
additional repair cost for pumps was included for replacement
seals; this replacement cost is based on the number of pumps, the
initial leak frequency (percentage), the fraction of pumps
requiring repair, and a $191.30 replacement cost for the seal.
The initial leak frequency, the fraction requiring repair, and
the hours for repair are provided in Table 5.

TABLE 5. PARAMETERS USED TO CALCULATE INITIAL AND ANNUAL
MONITORING AND REPAIR LABOR COSTS

Light Pressure

Gas liquid Sampling relief
Parameter valves valves Pumps connections devices
Initial leak |11.4 6.5 20.0 2.1 N/A
frequency, %
Subsequent 2.0 2.0 10.0 0.5 N/A
leak
frequency, %
Fraction 0.25 0.25 0.75 0.25 N/A
requiring
repair
Hours for 4 4 16 2 N/A
repair per
component
Monitoring Quarterly | Quarterly Monthly? Annually Annually
frequency

qWeekly visual monitoring is also conducted for pumps.

The indirect annual costs consist of miscellaneous charges
and capital recovery. Miscellaneous charges for monitoring
instruments, pressure relief devices, and sampling connections
are equal to 4 percent of the equipment cost. The annual
miscellaneous charges include taxes, insurance, administration,
and other fees. Miscellaneous charges for replacing pump seals
is equal to 80 percent of the maintenance charge for the pump
seals. The total equipment cost and the cost for the initial
monitoring and repair were annualized using capital recovery
factors. The capital recovery cost for the equipment is based on
the capital equipment cost and the appropriate capital recovery
factors for the individual components (see Table 1). The
annualized cost for the initial monitoring of liquid wvalves, gas
valves, pumps, and connectors is based on the cost for initial
monitoring of each component and the appropriate capital recovery
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factor for that component. The annualized cost for the initial
repair is based on the initial cost to repair each component and
the appropriate capital recovery factor for each component type.
An additional capital recovery cost for repair of pumps is
included for replacement seals.

The direct annual costs associated with the LDAR program
include annual maintenance charges, annual miscellaneous charges,
and annual labor charges. The maintenance cost for the
monitoring device is $4,548. The maintenance cost for pressure
relief devices, and sampling connections is equal to 5 percent of
the equipment cost. The maintenance charge for replacing pump
seals is equal to $191 per pump repaired.

Annual labor charges for conducting the LDAR program are
for monitoring and repairs. The annual labor cost associated
with monitoring of gas valves, liquid valves, pumps, connectors,
and pressure relief devices is based on the component count, the
number of monitorings performed per year, a monitoring fee of $2
per component, plus 40 percent for administrative and support
costs. Labor costs for monitoring of pumps also includes the
cost for visual monitoring of the pump each week; this cost is
based on the number of pumps, weekly monitorings, 30 seconds of
monitoring time per pump, the monitoring labor cost of $22.50 per
hour, plus 40 percent for administrative and support costs. The
annual labor cost for repairing equipment components is based on
the component count, the leak frequency, the number of
monitorings per year, the fraction of components requiring repair
(percentage), the hours required per repair, the repair labor
cost of $22.50 per hour, plus 40 percent for administrative and
support. The leak frequency, fraction requiring repair, hours
for repair, and the monitoring frequency are provided in Table 5.

The TAC is equal to the annualized equipment and annualized
initial monitoring and repair costs, the annual maintenance
charges, the annual miscellaneous charges, and the annual labor
charges. A credit of $1,250/Mg of product recovered is included
for materials that are no longer lost to equipment leaks.

The nationwide costs and cost effectiveness of the MACT
floor and regulatory alternative are shown in Table 6. There are
no cost impacts associated with the equipment leak MACT floor
because the floor is no control. The average cost effectiveness
for the regulatory alternative for the equipment leak emission

; source is $546/Mg, and the cost effectiveness for the individual
é models and processes range from a cost of $30,100/Mg to a savings
of $722/Mg. The cost and cost effectiveness for each of the
surveyed processes and each model process for the regulatory
alternative are shown in Attachment D. The emissions reductions
used in these cost-effectiveness calculations were developeg %n
the Baseline Emissions and Environmental Impacts memoranda.<4’

2
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F. Bag Dumps and Product Dryers at Existing Sources

No emission control device costs for controlling
particulate HAP were developed for the existing source MACT
floor. It is assumed that processes with particulate HAP
emissions are already controlled to the floor level for existing
sources, therefore, no additional control equipment is
necessary.

III. Description of Cost Analysis for New Sources

A. Number of Sources

Average annual growth rates in PAI sales in the 5 years
after the standards are promulgated were estimated to be
approximately 2 percent. The number of new sources manufacturing
PAI is assumed to correlate to the increase in production and
sales, thus an_estimated eight new facilities will be subject to
the standards.l® It is assumed that the new facilities will have
emissions points and control devices similar to the emission
points and control devices at existing sources.

B. Process Vents at New Sources

Emission control costs were developed for the new source
MACT floor. A total of 14 new processes are estimated for the 8
new facilities.? These new processes were modelled using the
same model processes as for existing sources. Control costs for
incinerators, condensers, and water scrubbers were developed
using the same algorithms as for existing; emission reductions
achieved by the devices were also estimated using the same
assumptions as for existing sources (see sections II.A and B).

The MACT floor cost and cost effectiveness for each model
process are shown in Attachment E. The nationwide cost and cost
effectiveness for the process vent MACT floor for new sources are
shown in Table 7. (See the design and cost algorithms presented
in Attachment A. See section II.B for discussion of the
assumptions and data used in each algorithm.)

C. Storage tanks at new sources

Emission control device costs were calculated for the new
source MACT floor. A total of 6 storage tanks subject to the new
source floor are estimated.? The new storage tanks were modelled
using the existing source models. The MACT floor control costs
and emission reductions were developed for IFR and condensers
using the same cost algorithms and assumptions as for existing
sources.

The costs and cost effectiveness for the MACT floor are
shown in Attachment F for each new storage tank. The nationwide
cost and cost effectiveness for storage tanks at new sources



20

08S°LI £6 §9¢C 000619t 000°TLL'L 98¢ TLS T 1001} LOVIN
3w/ % IK/3N 1K/$ $ IK/3N IK/3N uondo
‘SSOUIAINIJJD ‘aurfoseq ‘aurfaseq ‘OVL ‘IDL ‘SUOISSTW ‘SUOISSTUID
150D woij uononpal woJJ uoronpal IpIMuUOneN IpImuoneN aurjaseg parjonuodun)
uorssuyg uorsstuyg

SHDOYNOS MAN ¥OA SISOD HAIMNOILUYN ¥OOTd IOV

LNHA SSHO0dd

‘L HTIVY.L




21

subject to the MACT floor are provided in Table 8. (See the cost
algorithm table in Attachment B for IFR and the condenser
algorithm in Attachment A; see sections II.B and C for the
condenser cost discussion and section II.C for IFR cost
discussion.)

D. Wastewater at New Sources

Emission control costs were developed for the new source
MACT floor and two regulatory alternatives. Based on the model
plants analysis, five of the eight estimated new plants were
assumed to have wastewater streams (two represented by model LFr,
two represented by model HFr, and one represented by model HW).
None of these models exceeds the 2,100 megagrams per year (Mg/yr)
applicability criteria for the MACT floor for new sources (Note:
this result is believed to be reasonable because only one
existing source is known to exceed the cutoff). Therefore, no
control is needed to meet the MACT floor, and there are no cost
impacts associated with the floor.

The control requirements under Regulatory Alternative 1 for
new sources are the same as under the regulatory alternative for
existing sources.l 1In addition, the distribution of wastewater
Streams at new sources is assumed to be the same as at existing
sources, and the MACT floor in both cases is no control.
Therefore, the average uncontrolled emissions, the average
control costs, and the average cost effectiveness per stream
under Regulatory Alternative 1 for new sources should be the same
as under the regulatory alternative for existing sources. This
result, however, cannot be obtained using the model wastewater
streams because there are so few streams at new sources that the
models cannot be distributed in the same ratio as at existing
sources. Therefore, emission control costs for regulatory
alternative 1 for new sources were estimated using data from the
analysis for existing sources. As shown in Table 4, the TAC
under the regulatory alternative for existing sources was
$2.87 million. This value was divided by 30 (the number of
streams at existing sources) to obtain the average cost per
stream. This average value was then multiplied by 5 to estimate
the nationwide TAC for streams at new sources. Similar
calculations were used to estimate the emissions and emissions
reductions for new sources. Thus, the cost effectiveness of
Regulatory Alternative 1 for new sources is $3,070/Mg, the same
as for existing sources. The nationwide cost and cost
effectiveness for wastewater streams at new sources under
Regulatory Alternative 1 are presented in Table 9.

Relative to Regulatory Alternative 1, the applicability
requirements under Regulatory Alternative 2 consist of_smaller
flow rate cutoffs and lower HAP concentration cutoffs. The
models used in the analyses for existing sources were not based
on streams with these characteristics. Therefore, the emission
control cost analysis for Regulatory Alernative 2 was based on
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information about the individual streams at the surveyed plants
that would meet the more stringent applicability criteria. A
total of 10 additional streams at the surveyed plants would meet
the applicability criteria under Regulatory Alternative 2. Two
of the streams are from processes that have other wastewater
streams covered under Regulatory Alternative 1, and eight streams
are from processes that have no streams covered under Regulatory
Alternative 1. Characteristics of the 10 streams are presented
in Attachment G. In the Model Plants analysis, nine of these
streams were models that each represented two streams nationwide,
and one represented three sreams. Just as in the analysis for
Regulatory Alternative 1, the distribution of streams at existing
and new sources is assumed to be the same. Therefore, the
incremental cost-effectiveness of Regulatory Alternative 2 would
be approximately equal to the overall incremental cost
effectiveness for the 10 streams; the actual number of streams
that would be subject to Regulatory Alternative 2 does not need
to be estimated. The control costs were developed for steam
strippers and disposal as a hazardous waste (with treatment by
incineration). The results of the analyses are shown in
Attachment G; the cost effectiveness values range from $3,290/Mg
to $2.2 million/Mg for the individual streams, and the overall
cost effectiveness is $226,000/Mg. Thus, even if the
distribution of streams at new and existing sources differ, the
incremental cost effectiveness of Regulatory Alternative 2 would
be high. (See the cost algorithm for steam strippers in
Attachment C. See section II.D for discussion of the steam
stripper costs.)

E. Eqgquipment Leaks at New Sources

Control costs for equipment leaks were estimated for the
new source MACT floor. A total of 18 new processes subject to
the new source MACT floor for equipment leaks have been
estimated, and the equipment leak control cost is based on
component count models of these 18 processes. Just as for
existing sources, control costs are based on the LDAR program of
40 CFR part 63, subpart H.

The costs and cost effectiveness for each model process are
shown in Attachment H. The nationwide cost and cost
effectiveness for equipment leaks at new sources are shown in
Table 10. (See the equipment leak cost algorithm in
Attachment D. See section II.E for the discussion of equipment
leak costs.)

F. Bag Dumps and Product Dryers at New Sources

No control device costs for controlling particulate HAP
were developed. It is assumed that processes with particulate
HAP emissions are already controlled to the new source floor
level and there are no costs for additional control equipment.!



24

Ioofy
1X44 68 6¢€¢€ 00b‘Ep1 000°L1E 6LE 6LE LOVIA
SI/$ 9% 153N 1K/$ $ 1K/3N 1K/8IN uondp
‘SSOUIAIINIJJ ‘auraseq ‘urfoseq OV ‘IDL ‘SUOTSSTUID ‘SUOISSTUID
150D WO} uononpal woJj uononpal IpIMUOIIBN apImuoneN Jurjaseq pa[fonuodsun
uoIssruyg uorssmyg
SHDYNOS MIN V04 SISOD HAIMNOILYN ¥OOTd ILOVW JAVET INAWAINOE 0T HTILIVYL



Iv.

10.

11.

25
REFERENCES

Memorandum from D. Randall and K. Schmidtke, MRI, to

L. Banker, EPA:ESD. April 30, 1997. MACT Floor and
Regulatory Alternatives for the Pesticide Active Ingredient
Production Industry.

Memorandum from D. Randall, K. Schmidtke, and C. Hale, MRI,
to L. Banker, EPA:ESD. April 30, 1997. Baseline Emissions
for the Production of Pesticide Active Ingredient Industry.

Memorandum from D. Randall and K. Schmidtke, MRI, to
L. Banker, EPA:ESD. April 30, 1997. Environmental Impacts
for the Pesticide Active Ingredient Production NESHAP.

Memorandum from D. Randall and K. Schmidtke, MRI, to
L. Banker, EPA:ESD. April 30, 1997. Model Plants for the
Pesticide Active Ingredient Production Industry.

OAQPS Control Cost Manual. Fourth Edition.
EPA 450/3-90-006. January 1990. Chapter 8. Refrigerated
Condensers.

Memorandum from B. Shine, MRI, to R. McDonald, EPA:ESD.
July 14, 1993. Enhanced Monitoring Costs for Polymers and
Resins II NESHAP.

OAQPS Control Cost Manual. Fourth Edition.
EPA 450/3-90-006. January 1990. Chapter 3. Thermal and
Catalytic Incinerators.

OAQPS Control Cost Manual. Fourth Edition.
EPA 450/3-90-006. January 1990. Chapter 9. Gas Absorbers.

Alternative Control Techniques Document: Volatile Organic
Liquid Storage in Floating and Fixed Roof Tanks. EPA
Publication No. EPA-453/R-94-001. January 1994. p. 6-29.

Memorandum from D. Whitt, Radian, to D. Markwordt, EPA:CPD.
June 5, 1991. Impacts from the Control of Volatile Hazardous
Air Pollutant Emissions from Equipment in Non-SOCMI Process
Units for HON.

Engineering Cost Model Documentation Report for the
Pharmaceutical Manufacturing Industry. Prepared by Radian
Corporation for U. S. Environmental Protection Agency, Office
of Water. February 28, 1995. pp. 2-8 and 4-29.



12.

13.

26

Memorandum from K. Scott, Radian, to M. Kissell, EPA.

June 30, 1993. Steam Stripper Total Capital Investment and
Total Annual Costs.

Memorandum from K. Schmidtke, MRI, to L. Banker, EPA:ESD.

January 6, 1997. Growth Projections for the Pesticide Active
Ingredient Production Industry.



ATTACHMENT A

Costs and Cost Effectiveness Tables for the Process
Vent MACT Floor and Regulatory Alternatives for
Existing Sources

Example Condenser, Incinerator, and Scrubber Cost
Algorithms for Process Vent Models 2d and 2c
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CONDENSER COST ALGORITHM (MACT floor) Variables and equations
Model number: 2
Required condenser control efficiency: 0.9 ff
Waste Gas Parameters
Mass flux of HAP, Ib/yr 88,200 '
Flowrate, scfm 21 Qin
Flowrate, acfm 21
Temperature, degrees C
- degrees C 25
- degrees F 77 Tin
Pressure, mm Hg 760 Ptot
HAP molecular weight 85 MWhap
VOC mole fraction 0.11324 yin
VOC concentration, ppmv 113,235
Non condensable mole fraction 0.8868
Operating hours
Vent 2,800 Vh
Control device 8,760 CDh
Ratio of HAP venting time to ‘ 03196 Ratio=Vh/CDh
control device operating time
Cond design calculations
HAP pollutant MeCI2
Antoine equation constants
A 7409 A
B 13259 B
C 2526 C
HARP partial pressure at outlet, mm Hg 9.582 PP=(Ptot)yin)1-eff)/(1(yin)(efl))
- assumes ideal gas
HAP mole fraction at outlet 0.01261 yout=PP/Ptot
Condensation temperature
- degrees C 4632 Tdege=((B/(A-logl0PP))-C)
- degrees F 5137 TCON=(Tdegc)(1.8)+32
Condenser exit flowrate, ft3/min 14.35
HARP critical temperature
Molar heat of condensation, Btu/lbmole
- at 25 degrees C
-at TCON 13,005  Hcon
Molar heat capacity of HAP, Btu/lbmole/deg F 3230 Cphap
Molar heat capacity of air, Btu/lbmole/deg F 6.95 Cpair
Average characteristics during venting events
HAP in inlet stream
- Ibmole/hr 0.3640 Min=(Qin)yinX60 min/hr)/(392 sft3/lbmole)
- 1b/hr 30.94 LBin=(Min}MWhap)
HAP in outlet stream
- Ibmole/hr 0.036397 Mout=(Min)(1-eff)
- Ib/hr 3.094 LBout=(Mout}MWhap)
Heat load, Btwhr
Enthalpy change of condensed HAP 5,618  DELHcon=(Min-MoutXHcon+(Cphap)Tin-TCON))
Enthalpy change of noncondensed HAP 151 DELHuncon=(Mout) Cphap)Tin-TCON)
Enthalpy change of noncondensible “air" 2,543  DELHair=(((Qin}60 min/hr)/(392))(Min))} CpairXTin-TCON)
Total enthalpy change -
- Btu/hr 8312 LOADmax=DELHcon+DELHuncon+DELHair
- tons 0.693 Rmax=(LOADmax)/12,000
Heat load during non venting periods
- Btw/hr (assumed to be 10% of max load) 831 LOADmin=(LOADmax)0.1)
- tons 0.069 Rmin=(LOADmin)/12,000
Total annual condenser heat load, Btu/yr 28,228,007
Log mean temperature difference, deg F: 49.90
Coolant flow rate, 1b/hr 511  Qcool



Manifolding design parameters
Diameter of collection main (ft):
- calculated assuming a velocity of 2,000 ft/min
Length of duct, ft
Total number of vents
Number of elbows per vent

Costing factors:
Operator labor wage rate, $/hr
Maintenance labor wage rate, $/hr
Operating labor, hr/8-hr operation
Supervisory labor, % of operating labor
Maintenance labor, hr/8-hr operation
Monitoring maintenance labor, hr/8-hr operation

Utility requirements
Electricity, kwh/yr

Chemical Engineering Magazine Cost Indexes
June 1995 plant index
Feb 1989 plant index
August 1990 plant index

Unit costs (June 1995 dollars)
Detonation arrestor, $/ea
Stainless round duct, $/ft
Elbows, $/ea
Automatic damper, $/ea
Refrigeration unit cost, $

-mulitistage packaged unit

Capital Costs (June 1995 dollars),$
Equipment costs, $
Packaged refrigeration system
- includes instrumentation

Auxiliary equipment (manifolding) costs
Automatic damper (assume 1 per manifold)
Total round duct cost
Total elbow cost (2/vent)
Detonation arrestors (1/vent)
Total

Purchased equipment cost
Packaged refrigeration system
Auxﬁiaty equipment
Installation cost
Packaged refrigeration system
Auxiliary equipment (assume equal to PEC)
Monitoring costs
Initial Performance test for condenser
Thermocouple and datalogger
TOTAL CAPITAL INVESTMENT

Annual Costs, 8/yr
Direct annual costs
Operating labor:
Monitoring labor:
Supervisor labor:

0.116

300

$15.64
$17.20
0.5
15
0.5
0.5

19,449

382
352.4
354.8

5,000
4.22
6.97

791.16
25,469

31,836

91
1,267
84
30,000
32,141

34,383
37,927

5,157
37,927

24,420
3,000
142,814

8,563
8,563
2,569
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D=((4XQin)'2,000/P1)"0.5

L
Vents
N

WRo
WRm

Kwh=((Rmax)(Ratio)+(Rmin)(1-Ratio))*((-0.06973 TCON)
+3.446)*(CDh/0.85)

DAone

Duct=(0.85XQin)"0.5(382/352.4)
Eone=(0.85)(1.65XQin)"0.5(382/352.4)
ADone=(215*Qin"0.5+722)(382/352.4)
RU=(exp(9.73-0.012*TCON-+0.584*In(Rmax))¥382/354.8)

ECR=(1.25XRU)

AD=ADone
RD=(Duct)L)
Eall=(Eone)}VentsXN)
DA=(DAone)(Vents)
ECA=Eall+RD+AD+DA

PECr+ECRX1.08)
PECa=(ECAX1.18)

Ir=(PECrX0.15)
Ia=PECa

TEST
D
TCI=PECr+PECa+Ir+Ia+TEST+TD

OL=(0.5 hr/8-hr shift WRo)CDh)
MONL=(0.5 hr/8-hr shift WRoXCDh)
SL=(0.15XOL+MONL)



Maintenance labor:
Maintenance materials:
Monitoring maintenance materials (supplies):
Electricity:
Indirect annual costs
Overhead

Property taxes, insurance, administrative charges:

Capital Recovery
- CRF, 0.1098, based on 15 yrs and 7% interest

TOTAL ANNUAL COST, $/yr

Emission reduction, Mg/yr
COST EFFECTIVENESS, $/Mg

9,419
9,419

500
1,148

23,420

5,713
15,681
84,994

36.04
$2,358

ML=(0.5 hr/8-hr shift ( WRm)XCDh)
MM=ML

MONM
ELEC=(Kwh)($0.059/kwh)

0=(0.6OL+SL+ML+MONL+MM+MONM)
PTIA=(0.04XTCI)
CR=(CRFYTCI)

TAC=OL+SL+ML+MM+MONL+MONM+ELEC
+0+PTIA+CR
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CONDENSER COST ALGORITHM (Reg alt)

Model number:
Required condenser control efficiency:

Waste Gas Parameters

Mass flux of HAP, ib/yr
Flowrate, scfm
Flowrate, acfm
Temperature, degrees C

- degrees C

- degrees F
Pressure, mm Hg
HAP molecular weight
VOC mole fraction
VOC concentration, ppmv
Non condensable mole fraction

Operating hours
Vent
Control device
Ratio of HAP venting time to
control device operating time

Condenser design calculations
HAP pollutant
Antoine equation constants
A
B
C
HAP partial pressure at outlet, mm Hg
- assumes ideal gas
HAP mole fraction at outlet
Condensation temperature
- degrees C
-degrees F
Condenser exit flowrate, ft3/min
HARP critical temperature
Molar heat of condensation, Btu/lbmole
- at 25 degrees C
-at TCON
Molar heat capacity of HAP, Btu/lbmole/deg F
Molar heat capacity of air, Btw/lbmole/deg F
Average characteristics during venting events
HAP in inlet stream
- Ibmole/hr
- Ib/hr
HAP in outlet stream
- Ibmole/hr
- Ib/hr
Heat load, Btu/hr
Enthalpy change of condensed HAP
Enthalpy change of noncondensed HAP

Enthalpy change of noncondensible "air"

Total enthalpy change
- Btwhr
- tons
Heat load during non venting periods

- Btu/hr (assumed to be 10% of max load)

- tons
Total annual condenser heat load, Btu/yr
Log mean temperature difference, deg F:
Coolant flow rate, Ib/hr

0.98

88,200
21
21

25

77

760

85

0.11324
113,235

0.8868

2,800
8,760
0.3196

MeCI12

7.409
1325.9
252.6
1.936

0.00255

-66.43
-87.58
12.95

13,005
32.30
6.95

0.3640
30.94

0.007279
0.619

6,535
39
3,260

9,834
0.819

983
0.082
33,395,783
49.90
605
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Variables and equations

eff

Qin

Vh
CDh
Ratio=Vh/CDh

A
B
C

PP=(Ptot)yinX 1-eff)y/(1-(yin)X(efl))
yout=PP/Ptot

Tdege=((B/(A-log10PP))-C)
TCON=(TdegeX1.8)+32

Hcon
Cphap
Cpair

Min=(Qin)yinX60 min/hr)/(392 sft3/lbmole)
LBin=(Min)MWhap)

Mout=(Min)(1-eff)
LBout=(MoutXMWhap)

DELHcon=(Min-Mout}Hcon+(Cphap)XTin-TCON))
DELHuncon=(Mout)}CphapXTin-TCON)
DELHair=(((QinX60 min/hr)/(392))-(Min)X Cpair)}Tin-TCON)

LOADmax=DELHcon+DELHuncon+DELHair
Rmax=(LOADmax)/12,000

LOADmin=(LOADmax)0.1)
Rmin=(LOADmin12,000

Qcool



Manifolding design parameters
Diameter of collection main (ft):
- calculated assuming a velocity of 2,000 f/min
Length of duct, ft
Total number of vents
Number of elbows per vent

Costing factors:
Operator labor wage rate, $/hr
Maintenance labor wage rate, $/hr
Operating labor, hr/8-hr operation
Supervisory labor, % of operating labor
Maintenance labor, hr/8-hr operation
Monitoring maintenance labor, hr/8-hr operation

Utility requirements
Electricity, kwh/yr

Chemical Engineering Magazine Cost Indexes
June 1995 plant index
Feb 1989 plant index
August 1990 plant index

Unit costs (June 1995 dollars)
Detonation arrestor, $/ea
Stainless round duct, $/ft
Elbows, $/ea
Automatic damper, $/ea
Refrigeration unit cost, $

-multistage packaged unit

Capital Costs (June 1995 dollars),$
Equipment costs, $
Packaged refrigeration system
- includes instrumentation

Auxiliary equipment (manifolding) costs
Automatic damper (assume 1 per manifold)
Total round duct cost
Total elbow cost (2/vent)
Detonation arrestors (1/vent)
Total

Purchased equipment cost
Packaged refrigeration system
Auxiliary equipment
Installation cost
Packaged refrigeration system
Auxiliary equipment (assume equal to PEC)
Monitoring costs
Initial Performance test for condenser
Thermocouple and datalogger
TOTAL CAPITAL INVESTMENT

Annual Costs, $/yr

Direct annual costs
Operating labor:
Monitorine labor:
Supervisor labor:
Maintenance labor:
Maintenance materials:
Monitoring maintenance materials (supplies):
Electricity:

Indirect annual costs

0.116

300

$15.64
$17.20
0.5
15
0.5
0.5

31,277

382
3524
354.8

5,000
4.22
6.97

791.16
35,768

44,710

791
1,267
84
30,000
32,141

48,286
37,927

7,243
37,927

24,420
3,000
158,803

8,563
8,563
2,569
9,419
9,419

500
1,845
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D=((4XQin)'2,000/PT)0.5

L
Vents
N

WRo
WRm

Kwh=((Rmax)(Ratio}+Rmin)1-Ratio))*((-0.06973 ) TCON)
+3.446)*(CDh/0.85)

DAone

Duct=(0.85)Qin)"0.5(382/352.4)
Eone=(0.85)(1.65XQin)"0.5(382/352.4)
ADone=(215*Qin"0.5+722)(382/352.4)
RU=(exp(9.73-0.012*TCON+0.584*In(Rmax))}(382/354.8)

ECR=(1.25)RU)

AD=ADone
RD=(Duct)L)
Eali=(Eone)}Vents)N)
DA=(DAone)Vents)
ECA=Eall+RD+AD+DA

PECr+ECRX(1.08)
PECa=(ECAX1.18)

I=(PECr)0.15)
la=PECa

TEST
TD
TCI=PECr+PECa+Ir+la+TEST+TD

OL=(0.5 hr/8-hr shift WRoXCDh)
MONL=(0.5 hr/8-hr shift\ WRo)CDh)
SL=(0.15XOL+MONL)

ML=(0.5 hr/8-hr shift \WRm)CDh)
MM=ML

MONM

ELEC=(Kwh)($0.059/kwh)



Overhead

Property taxes, insurance, administrative charges:

Capital Recovery
- CRF, 0.1098, based on 15 yrs and 7% interest
TOTAL ANNUAL COST, $/yr

Emission reduction, Mg/yr
COST EFFECTIVENESS, $/Mg

23,420
6,352
17,437

88,087

39.24
$2,245

=(0.6XOL+SL+ML+MONL+MM+MONM)
PTIA=(0.04X(TCI)
CR=(CRFYTCI)

TAC=OL+SL+ML+MM+MONL+MONM+ELEC
+0O+PTIA+CR
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TOTAL ANNUAL COST SPREADSHEET PROGRAM--GAS ABSORBERS [1]
COST BASE DATE: Third Quarter 1991 [2]

VAPCCI (Second Quarter 1995): [3] 106.1

INPUT PARAMETERS:

Model inputs
-- Model number
-- Gas conditions out of process or incinerator
-- Gas flow rate, scfm
-- Gas temperature, deg. F
-- Gas conditions into absorber (saturated)
-- Gas flow rate, scfm
-- Gas temperature, deg. F
-- Inlet HCI concentration, mole fraction
-- Vent operating hours, hr/yr
-- Control device operating hours, hr/yr

Stream parameters:

-- Inlet waste gas flowrate (acfm): 16

-- Inlet waste gas temperature (oF): 65

-- Inlet waste gas pressure (atm.): 1

-- Pollutant in waste gas: Hydrogen chloride (HCI)

-- Inlet gas poll. conc., yi (mole fraction): 0.444

- Pollutant removal efficiency (fraction): 0.99

- Solvent: Aqueous caustic soda

-- Inlet pollutant conc. in solvent: 0

— Waste gas molecular weight (lb/lb-mole): 29.00

— Solvent molecular weight (Ib/lb-mole): 18

-- Inlet waste gas density (1b/ft3): 0.0757

- Solvent density (Ib/ft3): 62.4

-- Solvent specific gravity: 1

-- Waste gas viscosity @ inlet temp. (Ib/ft-hr): 0.044

— Solvent viscosity @ inlet temp. (Ib/ft-hr): 2.16

-- Minimum wetting rate (ft2/hr): 1.3

-- Pollutant diffusivity in air (f2/hr): 0.725

- Pollutant diffusivity in solvent (ft2/hr): 0.000102

Packing parameters:

-- Packing type: 1-in ceramic Raschig rings 1-in ceramic Raschig rings
-- Packing factor, Fp: 160 160
-- Packing constant, alpha: 6.41 6.41
-- Packing constant, beta: 0.32 0.32
-- Packing constant, gamma: 0.51 0.51
-- Packing constant, phi: 0.00357 0.00357
-- Packing constant, b: 0.35 0.35
-- Packing constant, c: 0.97 0.97
-- Packing constant, j: 0.25 0.25
-- Surface area-to-volume ratio, a (ft2/ft3): 58 58

-- Packing cost ($/ft3): 35 35



DESIGN PARAMETERS:

-- Material of construction (see list below):[4]
-- Inlet pollutant concentration (free basis) (Y1i):

-- Outlet pollutant concentration (free basis) (Y0):

-- Out. eq. poll. conc. in solv., Xo* (op. line):
-- Theoretical operating line slope (Ls/Gs,min.):
-- Ls/Gs adjustment factor:

-- Actual operating line slope (Ls/Gs, act.):

-- Gas flowrate, Gs (free basis, lb-moles/hr):

-- Solvent flowrate, Ls (free basis, Ib-mol/hr):

-- Gas flowrate, Gmol,i (Ib-moles/hr):

-- Solvent flowrate, Lmol,i (Ib-moles/hr):

-- Outlet actual pollutant conc. in solv., Xo:

-- Gas poll. conc. in eq. with Xo (Yo*):

-- Outlet solv. poll. conc. (mol frac basis,xo):

-- Gas poll. conc., yo* (mole fract. basis):

-- Outlet gas poll. conc., yo (mole fract.):

-- Slope of equilibrium line (m):

-- Absorption factor (AF)--first calculation:

-- ABSCISSA (column diameter calculation):

-- ORDINATE (column diameter calculation):

-- Superficial gas flowrate, Gsfr,i (Ib/sec-ft2)

- Flooding factor, f:

-- Column cross-sectional area, A (ft2):

-- Superficial liq flowrate (Ib/hr-ft2) (Lsfr,i):

-- Minimum liquid flowrate (lb/hr-ft2):

-- If Superficial liquid flowrate is < minimum
needed, the minimum must be used to calculate
tower area and diameter (iteratively):

-- guess A iteratively until the two
ORDINATE values below agree, ft2
-- recalculate Lmol, i
-- calculate ABSCISSA for Fig. 9.5
-- calculate Gsft,i from Eq. 9-21
-- calculate ORDINATE for Fig. 9.5 using
eq. 9.54
-- calculate ORDINATE from eq. 9-19
-- Absorption factor--based on min liq flowrate
-Xo
-- X0
-- AF
-- Values to use in subsequent calculations
-- Lsfr,i
-A
-- Gsfr,i
-- AF

-- Column diameter, D (ft2):

-- Number of transfer units, Ntu:

-- Gas film transfer coefficient, Hg (ft):

-- Liquid film transfer coefficient, Hl (ft):

-- Height of a transfer unit (ft):

-- Packing depth (ft):

-- Column total height (ft):

-- Column surface area (ft2):

-- Column gas pressure drop (in. w.c./ft packing):

1
7.985612E-01
0.0079856

check for each model

check for each model

0.0001
0.00792
0.00104
7144.47
0.16020

0.0971

0.3071

0.7

0.05

3559.64
4,705

27
0.23532
0.2763
0.0785

0.0788

1.21E-02
1.23E-02
7,144.47

4,705
0.102
0.2763
7,144 47

4.027
0.625
0.969
0.625
2.516
6.70
7.8
1.017
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-- Column liquid pressure drop (ft of H20): 60
-- Packing volume (ft3): 0.3
CAPITAL COSTS:
Equipment costs ($):
-- Gas absorber 896
-- Pump (assumes $16/gpm) 15
-- Packing 9
-- Total (base) 920
' (escalated) 1,026
Purchased Equipment Cost ($): 1,210
Total Capital Investment ($): 2,662
ANNUAL COST INPUTS:
Control device operating factor (hr/yr): 8,760
Vent operating factor, hr/yr 2,800
Operating labor rate ($/hr): 15.64
Maintenance labor rate ($/hr): 17.20
Operating labor factor (hr/sh): 0.0
Maintenance labor factor (hr/sh): 0.5
Electricity price ($/kWhr): 0.059
Caustic price ($/ton): 300
Solvent (water) price ($/1000 gal): 0.2
Wastewater trtmt cost ($/1000 gal): 3.80
Overhead rate (fraction): 0.6
Annual interest rate (fraction): 0.07
Control system life (years): 15
Capital recovery factor (system): 0.1098
Taxes, insurance, admin. factor: 0.04
ANNUAL COSTS:

Item Cost ($/y1)  Wt. Factor W.F.(cond.)
Operating labor 0 0.000 -
Supervisory labor 0 0.000 -—-
Maintenance labor 9,419 0.182 -
Maintenance materials 9,419 0.182 —-
Electricity [5] 4 0.000  ----
Caustic 18,627 0.359 ——
Quench water 0 0.000  ----
Solvent (water) 134 0.003 -
Wastewater treatment 2,539 0.049 -—--
Overhead 11,303 0.218 0.581
Taxes, insurance, administrative 106 0.002 -
Capital recovery 292 0.006 0.008
Total Annual Cost 51,844 1.000 1.000
NOTES:

[1] This program has been based on data and procedures in Chapter 9
of the OAQPS CONTROL COST MANUAL (4th edition).



[2] Base equipmernt costs reflect this date.

[3] VAPCCI = Vatavuk Air Pollution Control Cost Index (for gas
absorbers) corresponding to year and quarter shown. Base equipment cost,
purchased equipment cost, and total capital investment have been
escalated to this date via the VAPCCI and control equipment vendor data.

[4] Enter one of the following: fiberglass-reinforced plastic (FRP)--'1'
: 304 stainless steel--'1.4"; polypropylene--'0.95'; polyvinyl chloride
PVC)--'0.70".

{5] Does not include electricity for fan because fan electricity is
included in the incinerator or condenser algorithm.
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THERMAL INCINERATOR COST ALGORITHM

Process vents model:

Waste gas parameters
1. Mass flux of HAP, Ib/yr
1. Volumetric flow rate, scfm
2. HAP concentration, ppmv
3. Assumed heating value of HAPs, Btu/scf HAP
4. Temperature, deg. F
5. Molecular weight of HAP
6. Molecular weight of gas

Operating hours, hr/yr
Vents
Control device
Ratio of HAP venting time to control
device operating time

Equipment design parameters

Manifolding
Number of vents
Diameter of collection main, ft

- calculated assuming velocity of 2,000 f/min

Length of duct, ft
Number of elbows in duct per vent
Number of dampers

Incinerator
Energy recovery, percent
Operating temperature, deg. F

Calculate natural gas requirements
STEP 1: Calculate total waste gas flow
into incinerator
Calculate O2 content, vol percent
Calculate dilution air for combustion, scfm
Calculate dilution air for safety, scfm
Total gas flow into incinerator, scfm

Step 2: Calculate heat content of waste gas into
incinerator, Btw/scf

Step 3: Calculate waste gas temperature out of
preheater, deg. F
- calculated assuming amount of auxiliary fuel
and dilution air are small so that mass flow
rates on both sides of the preheater are about
the same.

Step 4: Calculate auxiliary fuel required while
vent(s) operate, scfm

STEP $: Calculate total gas flow out of
incinerator while vent(s) operate, scfm

Step 6: Calculate maximum auxiliary fuel flow

88,200
2,080.0
1,143
2,000
77

85 MeC2
29.06

2,800 Vh
8,760 Cbh
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HAP'S CONTROLLED (98% of input), Mg/yr
39.24

COST EFFECTIVENESS ($/Mg)
4,780

03196 Ratio=Vh/CDh

Variables/Equations

6 Vents
1.15

300 L

70
1600

20.98

0.00

0.00
2080.00 scfmi

229

1,143

22.76 FFmin

2102.76

28.16 FFmax



(when no emissions are vented), scfm

Step 7: Calculate maximum total gas flow out
of incinerator, scfm

Utility requirements
Electricity, kwh/yr
- combined fan/motor efficiency of 60 percent
Natural gas

Chemical Engineering Magazine cost indexes
June 1995 plant index
Feb 1989 plant index
June 1995 equipment index
April 1988 plant index

Unit costs
Elbows, $/ea.
SS round duct diam. of main, $/ft
Automatic damper, $/ea.
Detonation arrestor, $/ea.

Operator labor wage rate, $/hr
Maintenance labor wage rate, $/hr

Capital Costs for Incinerator (June 1995 dollars), $

Purchased equipment costs

Equipment

Recuperative incinerator
- use 500 scfim when max scfm from
step 7 is less than 500

Instrumentation

Sales tax

Freight

Total purchased equipment cost
Direct installation costs
Indirect costs (installation)
Total capital investment

Capital Costs for Manifolding (June 1995 dollars), $

Purchased equipment cost
Ductwork
Elbows
Round duct
Automatic damper
Detonation arrestors
Total (W/ instr., sales tax, & freight)
Installation (assume equal to PEC)
Total capital investment

Capital Costs for Monitoring (June 1995 dollars), $

Initial performance test
Thermocouple and datalogger

Total capital investment
- If scfm from step 7 <20,000;

2108.16

104,434

13,892,987
13,892,987,272

382
3524
428.6
340.1
342.5

69.34
42.02
886.77
5,000
15.64
17.21

182,245

18,225
5,467
9,112

215,050
64,515
66,665

346,230

832
12,607
887
30,000
52,304
52,304
104,608

24,420
3,000

400,840
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scfm

Kwh=(0.000117)(scfm)29 in. H20XCDh)/0.6

GAS3=((FFmax)1-Ratio)+(FFmin)Ratio)}(60) CDh)
GASbtu=(GASR3)(1,000 Btu/scf)

Eone=(0.85)(1.65)X(scfm)"0.5(382/352.4)
Duct=(0.85)scfin)"0.5(382/352.4)
ADone=(215*scfn"0.5+722)(382/352.4)
DAone

WRo

WRm

RI=(21,342)(scfm)"0.25(428.6/340.1)

I=(RIX0.1)
S=(RI)0.03)
F=(RI)0.05)
PECi=RI+I+S+F
DI=(PECiX0.3)
II=(PECiX0.31)
TCli=PECi+DI+II

Eall=(Eone)}(Vents}N)
RD=(Duct)(L)

AD=ADone
DA=(DAone)(Vents)
PECd=(Eall+RD+AD+DA)*1.18
Im=(PECd)

TCIm=PECd+Im

TEST

TCI
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then TCI=1.25xPECi+TCIm+TEST+TD
- If scfm from step 7 >= 20,000;
then TCI=TClLi+TCIm+TEST+TD

Annual costs, $/yr
Direct annual costs
Operating labor
Control device 8,563  OLc=(0.5hr/8-hr shift WRo)(CDh)
Monitoring 8,563  OLm=(0.5hr/8-hr shit( WRo}CDh)
Supervisory labor 2,569  SL=(0.15)OLc+OLm)
Maintenance labor 9,422  ML=(0.5hr/8-hr shift} WRm)(CDh)
Maintenance materials 9,422 MM=ML
Monitoring supplies 500 MS
Utilities
Natural gas 45,847 NG=(GASA3)($3.3/1,000 scf)
Electricity 6,162  Elec=(Kwh)($0.059/kwh)
Indirect annual costs
Overhead 23,424 0=(0.6)OLc+OLm+SL+ML+MM+MS)
Administrative charges 8,017  A=(0.02XTCI)
Property tax 4,008 PT=(0.01XTCI)
Insurance 4,008 INS=(0.01)TCI)
Capital recovery 57,080 CR=(CRFYTCI)
- CRF, 0.1424, based on 10-yrs and 7% interest
Total annual cost, $/yr 187,585 TAC=OLc+OLm+SL+ML+MM+MS+NG+Elec+O+A+PT
+INS+CR
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TOTAL ANNUAL COST SPREADSHEET PROGRAM--GAS ABSORBERS [1]

COST BASE DATE: Third Quarter 1991 [2]

VAPCCI (Second Quarter 1995): [3] 106.1

INPUT PARAMETERS:

Model inputs
-- Model number
-- Gas conditions out of process or incinerator
-- Gas flow rate, scfm
-- Gas temperature, deg. F
-- Gas conditions into absorber (saturated)
-- Gas flow rate, scfm
-- Gas temperature, deg. F
-- Inlet HCI concentration, mole fraction
-- Vent operating hours, hr/yr
-- Control device operating hours, hr/yr

Stream parameters:

-- Inlet waste gas flowrate (acfm): 2,654
-- Inlet waste gas temperature (oF): 130
-- Inlet waste gas pressure (atm.): 1
- Pollutant in waste gas: Hydrogen chloride (HCl)

-- Inlet gas poll. conc., yi (mole fraction): 0.004902
-- Pollutant removal efficiency (fraction): 0.99
-- Solvent: Aqueous caustic soda

-- Inlet pollutant conc. in solvent: 0
-- Waste gas molecular weight (Ib/lb-mole): 29.00
-- Solvent molecular weight (Ib/lb-mole): 18
-- Inlet waste gas density (Ib/ft3): 0.0673
-- Solvent density (Ib/fi3): 62.4
-- Solvent specific gravity: 1
-- Waste gas viscosity @ inlet temp. (Ib/ft-hr): 0.044
— Solvent viscosity @ inlet temp. (Ib/ft-hr): 2.16
-- Minimum wetting rate (ft2/hr): 1.3
-- Pollutant diffusivity in air (ft2/hr): 0.725
-- Pollutant diffusivity in solvent (ft2/hr): 0.000102
Packing parameters:

-- Packing type: 2-in. ceramic Raschig rings

-- Packing factor, Fp: 65
-- Packing constant, alpha: 3.82
-- Packing constant, beta: 0.41
-- Packing constant, gamma: 0.45
-- Packing constant, phi: 0.0125
-- Packing constant, b: 0.22
-- Packing constant, c: 0.24
-- Packing constant, j: 0.17
-- Surface area-to-volume ratio, a (ft2/ft3): 28
-- Packing cost ($/£t3): 20

1-in ceramic Raschig rings
160
641
0.32
0.51
0.00357
0.35
0.97
0.25
58
35



DESIGN PARAMETERS:

-- Material of construction (see list below):[4]
-- Inlet pollutant concentration (free basis) (Yi):

-- Outlet pollutant concentration (free basis) (Yo):

-- Out. eq. poll. conc. in solv., Xo* (op. line):
-- Theoretical operating line slope (Ls/Gs,min.):
-- Ls/Gs adjustment factor:

-- Actual operating line slope (Ls/Gs, act.):

-- Gas flowrate, Gs (free basis, Ib-moles/hr):

-- Solvent flowrate, Ls (free basis, lb-mol/hr):

-- Gas flowrate, Gmol,i (Ib-moles/hr):

-- Solvent flowrate, Lmol,i (Ib-moles/hr):

-- Qutlet actual pollutant conc. in solv., Xo:

-- Gas poll. conc. in eq. with Xo (Yo*):

-- Outlet solv. poll. conc. (mol frac basis,xo):

-- Gas poll. conc., yo* (mole fract. basis):

-~ QOutlet gas poll. conc., yo (mole fract.):

-- Slope of equilibrium line (m):

-- Absorption factor (AF)-first calculation:

-- ABSCISSA (column diameter calculation):

-- ORDINATE (column diameter calculation):

-- Superficial gas flowrate, Gsfr,i (Ib/sec-ft2)

-- Flooding factor, f:

-- Column cross-sectional area, A (ft2):

-- Superficial liq flowrate (Ib/hr-ft2) (Lsft,i):

-- Minimum liquid flowrate {Ib/hr-ft2):

-- If Superficial liquid flowrate is < minimum
needed, the minimum must be used to calculate
tower area and diameter (iteratively):

-- guess A iteratively until the two
ORDINATE values below agree, ft2
-- recalculate Lmol,i
-- calculate ABSCISSA for Fig. 9.5
-- calculate Gsft,i from Eq. 9-21
-- calculate ORDINATE for Fig. 9.5 using
eq. 9.54
-- calculate ORDINATE from eq. 9-19
— Absorption factor--based on min liq flowrate
--Xo
- X0
-- AF
-- Values to use in subsequent calculations
- Lsfri
-A
-~ Gsfr,i
-- AF

-- Column diameter, D (ft2):

-- Number of transfer units, Ntu:

-- Gas film transfer coefficient, Hg (ft):

-- Liquid film transfer coefficient, Hl (ft):

-- Height of a transfer unit (ft):

-- Packing depth (ft):

-- Column total height (ft):

-- Column surface area (ft2):

-- Column gas pressure drop (in. w.c./ft packing):

1
4.926148E-03
0.0000493

0.0305
1.5
0.0457
368
16.82
370
16.82

0.1067

Sihaias
0.0964
0.0001
0.00005
0.00104
44.07
0.00093
0.2061
0.6621
0.7
6.40
47.35
2,271

R
Wﬂm& X
ﬁA SRR R B

877
0.04835
0.6123
0.1761

0.1759
1.50E-08

1.50E-08
infinity

2,271
6.95
0.6123
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check for each model

3: check for each model



-- Column liquid pressure drop (ft of H20): 60
-- Packing volume (ft3): 72.6
CAPITAL COSTS:
Equipment costs ($):
-- Gas absorber 23,605
-- Pump (assumes $16/gpm) 505
-- Packing 1,453
-- Total (base) 25,563
' (escalated) 28,495
Purchased Equipment Cost ($): 33,624
Total Capital Investment ($): 73,972
ANNUAL COST INPUTS:
Control device operating factor (hr/yr): 8,760
Vent operating factor, hrfyr 2,800
Operating labor rate ($/hr):
Maintenance labor rate ($/hr): 17.20
Operating labor factor (hr/sh):
Maintenance labor factor (hr/sh):
Electricity price ($/kWhr):
Caustic price ($/ton):
Solvent (water) price ($/1000 gal):
Wastewater trtmt cost ($/1000 gal):
Overhead rate (fraction):
Annual interest rate (fraction):
Control system life (years):
Capital recovery factor (system): 0.1098
Taxes, insurance, admin. factor:
ANNUAL COSTS:

Item Cost ($/y1)  Wt. Factor
Operating labor 0.000
Supervisory labor 0.000
Maintenance labor 9,419 0.122
Maintenance materials 9,419 0.122
Electricity [5] 0.003
Caustic 31,054 0.402
Quench water 0.002
Solvent (water) 0.003
Wastewater treatment 4,233 0.055
Overhead 11,303 0.146
Taxes, insurance, administrative 2,959 0.038
Capital recovery 8,122 0.105
Total Annual Cost 77,162 1.000
NOTES:

[1] This program has been based on data and procedures in Chapter 9
of the OAQPS CONTROL COST MANUAL (4th edition).

W.F.(cond.)

08-Jan-97;, PVYMODCST.WB2



[2] Base equipment costs reflect this date.

[3] VAPCCI = Vatavuk Air Pollution Control Cost Index (for gas
absorbers) corresponding to year and quarter shown. Base equipment cost,
purchased equipment cost, and total capital investment have been
escalated to this date via the VAPCCI and control equipment vendor data.

[4] Enter one of the following: fiberglass-reinforced plastic (FRP)--'1'
: 304 stainless steel--'1.4"; polypropylene--'0.95'; polyvinyl chloride
(PVC)--'0.70".

[5] Does not include electricity for fan because fan electricity is
included in the incinerator or condenser algorithm.

08-Jan-97; PVYMODCST.WB2



ATTACHMENT B

Inputs to the Condenser Cost Algorithm for Storage
Tanks

Costs and Cost Effectiveness Tables for the Storage
Tank MACT Floor and Regulatory Alternative for Existing
Sources

Example IFR Cost Calculation Table (see Attachment A
for Condenser Algorithm)
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ATTACHMENT C

Costs and Cost Effectiveness Table for the Wastewater
Regulatory Alternative for Existing Sources

Example Steam Stripper Cost Algorithm for Wastewater
Stream 44

Example Hazardous Waste Disposal Cost Calculation Table
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STEAM STRIPPER COST ALGORITHM 5/2/97
PAINESHAP FILE:\PROJECT\AGCHEMSWW-IMP\HON_SSR2.XLS

Design Inputs:
Feed Rate (gpm): 5.5 Feed=(Gal)(60)/Hours
Gallons/yr Stripp 695,665 Gal
On-Stream Time (hr/yr) 2,121.6 Hours
HAP concentration 12,973 Conc=(Massyr)/(Gal)/(8.33)(10%6)
HAP mass (Ib/hr) 35.4 Masshr=(Conc)/(10"6)(Feed)(8.3)(60)
HAP Mass (Ib/yr) 75,177 Massyr
HAP Identity
LV (feed-to-steam ratio) 10.4 Ratio Cost Indices:
Steam Pressure (psig) 100 Pst
Steam Temperature (K) 450 Tst Chemical Eng. Magazine 2/95
Steam Hv (BTU/Ib): 900 HVs 425.5 - Fabricated Equip.
Sat'd steam Temp (F): 328 Tsat 389.5 - Tanks
389.5 - Condensers
Theoretical stages 5 Stage 595.5 - Pumps
Hap Removal depends on Fr
Required Feed Temp (F): 170 Tfeed 356.0 CE plant index July 1989
Bottoms Temp (F): 210 Thot 382.0 CE plant index June 1995
Wastewater Temp (F): 68 Tww
Overheads Temp (F): 170 Tov 252.5 HON Tower #1 CEM 1st quarter 1979
Overhead Hvap (BTU/Ib): 1800 Hvov - Fabricated equip. cost index
Overheads Flow (Ib/hr): 32 Massov 252.5 HON Tower #2 Peters & Timmerhaus CEM 1st quarter 197
Decant Temp (F): 77 Tdec - Fabricated equip. cost index
Cool Outlet (F): 150 Tout 252.5 HON Tanks CEM 1st quarter 1979
2525 HON Decanter CEM 1st quarter 1979
356 HON Preheater CEM 7/89
457.7 HON Pumps CEM 9/88
Design Calculations 365.4 HON Condensers CEM 9/88
Bottom Approach Temp(F): 73 Tbotapp=Tww+5
Wastewater Flow (Ib/hr) 2,731 Massww=(Feed)(8.33)(60)
, Duration of Stripp (hrs) 2,121.6 Hours

j, Steam Density (Ib/ft3) 0.24 Denst=[(Pst)/(14.7)(760) + 760]+(18)/(999xTst)
Flooding Abcissa 0.64 Floodab=(Ratio)x(Denst/62.4)*0.5
Flooding Ord (for 18 in. tray spacin 0.12 Floodord=10"[1.04635-0.64549(log(Floodab))-0.19925(log(Floodab))*2}
Velocity at Flood, ft/s 1.90 Vel=(Floodord){(62.4-Denst)/Denst}*0.5
Percant of Flood, % 80 %Flood
/ Tower Diameter (@80%flood) (ft) 0.80 D=[Massww/3600/Vel/(%Flood/100)(4)/3.1458}*0.5
Tower Height 21.39 H=3'Stage+3*'D+4
Weight of Column (Ib): 1,440 W=82.11xDx{H+0.8116xD)

Column Cost: HON #1 ($): $39,315 Cost1=1A+1B+1C(0.85)(1.189+0.0577*D)(382.0/230.9)
~shell skirts,nozzles $20,457 1A=[exp((6.823+0.14178*In(W)+0.02468*(In(W))"2)]*3.1
~platforms $1,530 1B=151.81%(D"0.63316)*(HA0.80161)

--trays $4,795 1C=(Stage)(3)(278.38)*exp(0.1739*D)




Column Cost: HON #2 (8):

--shell
--manholes
--nozzles
trays
~ladders
--platforms

—-insulation

Column Cost: Average of Two

Tanks

Feed Volume, ft3
Feed Tank ($)

Decanter ($)

Pumps

Feed pump hp (for two pumps)
Feed Pumps ($):

Bottoms pump hp

Bottoms Pump ($):

Overheads pump hp

Overhead Pump- Aqueous ($):

Feed Preheater
LMTD

Area (ft2)
Cost($):

Steam Condenser
LMTD

Area (ft2}

Cost ($):

Flame Arrestor ($):

Equipment Cost:

Piping:

Instrumentation (10%)

Sales Tax (3%)+ Freight (5%)

Purchased Equipment Cost:
Installation (Direct):
Installation (Indirect):

Total Capital Investment:

$58,440

$13,477
$15,107
$1,223
$3,796
$276
$145
$535

$48,877
TRAY

13,378
$25,093

$3,584

0.526
$10,946
0.263
$5,473
0.025
$4,096

16.83
97.37
$7,476

13.78
111.36
$3,656

$5,000

$114,201
$34,260
$14,846
$13,065

$176,373
$97,005
$61,730

$335,108

Cost2=(2A+2B+2C+2D+2E+2F+2G)(382.0/225.9)

2A=(133.36)(WA0.6347)
2B=(Stage)(3)(18)(55.95)
2C=(26)(24.57+35.94*0.6252)
2D=(Stage)(3)(214.54)"exp(0.2075*D)
2E=(H)(30)(0.43)

2F=(D)(425)(0.43)
26G=(3.1459)(D)(H)(10)

Cost=(Cost1+Cost2)/2

Feedvol=(48)(Gal)(Hours/0.85)

If Feedvol>21,000 gal then COSTtk=exp(11.362-0.6104*In(Feedvol)-0.045355*In(Feedvol}*2)(382.0/230.9)
Feedvol <21,000 gal then COSTtk=exp(2.331+1.3673*In(Feedvol)-0.063088*In(Feedvol)"2)(382.0/230.9)

COSTdec=[(Feed/Ratio*60*2)"0.5502]*216.8(382.0/225.9)

HPf=(Feed)(122)(8.33)/60/0.64*(0.001341)/(0.7376)(2)
COSTip=(HP)A0.4207 * (8740.7)(2)(382.0/347.8)
HPb=(HP)/(2)

COSTbp=(COSTiR)/(2)
HPo=(Feed)/(Ratio)(122)(8.33)/60/0.64*(0.001341)/(0.7376)
COSTop=(HVp)*0.4207 * (8740.7)(2)(362.0/347.8)

LMTDpre={(Tbot-Tfeed)-(Tbotapp-Tww)[In{(Tbot-Tfeed)/(Tbotapp-Tww))]
AREApre=(Massww)(Tfeed-Tww)/(170"LMTD)

If Feed<0.48 then COSTpre=(4213.357*(0.48)40.5 - 2882.31)(382.0/356.0)
If Feed>0.48 then COSTpre=(4213.357*(Feed)*0.5 - 2882.31)(382.0/356.0)

LMTDcond=[(Tov-Tout)-(Tdec-68))/[In((Tov-Tout)/(Tdec-68))]
AREAcond=[(Massww)/(Ratio)(HVs)+(Massww)/(Ratio)*(Tfeed-Tdec)}/170/LMTDcond
If AREAcond<240 then COSTcond=(2228.8*exp(0.00411*AREAcond))(356.0/343.0)

If AREAcond>240 then COSTcond=(5328*exp(0.0008762*AREAcond))(382.0/343.0)
COSTarr

EC=COST+COSTdec+COSTtk+COSTfp+COSTbp+COSTop+COSTpre+COSTcond+COSTarr
Piping=(EC)(0.30)

Instr=(EC+Piping)(0.10)

STF=(EC+Piping+Instr)(0.08)

PEC=EC+Piping+Instr+STF
1d=(PEC)(0.55)
li=(PC)(0.35)

TCI=PEC+ld+li

5/2/917



Direct Annual Costs

Utilities

Steam:

Electricity:
Cooling Water:

Labor
SS op hours, hriweek

Operating Labor:

Supervision and Admin:

Maintenance
Labor:

Materials:

Total Direct Annual Costs:

Indirect Annual Costs

Overhead

Property Taxes
Insurance
Administrative Charges

CRF: (7%, 15 yrs)

Total Indirect Annual Costs:

Total Annualized Cost:

$2,342 Steam=(Massww)/(Ratio)(Hours)/(2204.62)(9.26)
(9.26/Mg)
$76 Elec=(HPH+HPb+Hpo)(0.7457)(Hours)(0.059)

$118 Water=(Massww)/(Ratio)(HVs)/(Tov-68)(0.00002399)(Hours)

40.8 Hourss=Hours/52
(if process operates 52 wk/yr and SS operates at least once per wk)
$2,984 If Hourss>=8 then OL=(0.5)/(8)(Hours})(22.50)
If Hourss<8 and >=4 then OL=(1)/(8)(Hours)(22.50)
If Hourss<4 and >=1 then OL=(4)/(8)(Hours)(22.50)
If Hourss<1 then OL=(Hours)(22.50)
$448 SL=(0L)(0.15)

$2,984 ML=0OL
$2,984 MM=ML

$11,975 DIRTAC=Steam+Elec+Water+Hourss+OL+SL+ML+MM

$5,639 O=(OL+SL+ML+MM)(0.60)
$3,351 PT=(TCI)(0.01)

$3,351 INS=(TCI)(0.01)

$6,702 A=(TCI)(0.02)

$36,795 CR=(TCI)(CRF)

$55,838 INDTAC=O+PT+INS+A+CR

$67,813 TAC=DIRTAC+INDTAC



HAZARDOUS WASTE DISPOSAL COSTS FOR WASTEWATER FOR EXISTING SOURCE REGULATORY ALTER
PAI NESHAP FILE: F:\PROJECT\AGCHEMS\WW-IMPAX\HAZWASTE.WQ2

Disposal
Flow rate Load per as hazardous
per stream, stream, ' waste,
Stream gal/yr Mg/yr ppmw $/yr
1 29 5,625 0.349 16,392 $3,960
2 30 1,028 0.192 49,338 $724
3 31 2,056 0.385 49,513 $1,447
4 7 11,600 1.23 28,033 $8,166
5 23 47,000 1.81 10,179 $33,087

EXAMPLE: Stream 29
Hazardous waste disposal cost is $0.704/gal or $169.02/ton. Stream 29 has a flow rate of 5,625 gallons per year.

5,625 gal/yr x $0.704/gal = $3,960/yr






ATTACHMENT D

Costs and Cost Effectiveness Table for the Equipment
Leak Regulatory Alternative for Existing Sources

Example Cost Calculations for Batch Equipment Leak
Model
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EXAMPLE COST CALCULATIONS FOR THE BATCH MODEL

I. CAPITAL COSTS

1. Equipment costs

compressor 0 x $6,633 = $0
open-ended lines 0x $108 = $0
sample connections 0x $434 = $0
pressure relief devices 0 x $4,176 = $0
monitoring instrument 1 x $6,907 =  $6,907
$6,907
2. Initial monitoring cost (Not part of the Capital Cost, but is annualized under section II. Annual Costs.)
Monitoring Cost Initial monitoring cost
Component No. components (# comp. x $2.50) (Cost x 1.4)
Gas valves 65 162.50 227.50
Liquid valves 340 850.00 1,190.00
Pump 14
pump 35.00 49.00
replacement seals N/A N/A
Flanges 1,100 2,750 3,850
3. Initial repair cost (Not part of the Capital Cost, but is annualized under section II. Annual Costs.)
Fraction | Hour Initial repair
No. Initial leak | require | per Repair cost cost
Component components | frequency | repair repair (x $22.50)2 (Cost x 1.4)
Gas valves 65 0.11 0.25 4 166.72 233.41
4
Liquid valves 340 0.06 0.25 4 497.25 696.15
5
Pump 14
pump 0.20 0.75 16 756.00 1,058.4
replacement seals? 0.20 0.75 | N/A N/A 401.73
Flanges 1,100 0.02 0.25 2 259.87 363.82
1

aNot applicable to pump replacement seals.
itial repair cost for replacement seals is equal to the number of components, times the leak frequency, times
the fraction requiring repair times a cost of $191.30 per replacement seal. No administrative charges are
included for this repair cost.



II. ANNUAL COSTS

1. Indirect annual costs

a. Annualized equipment costs

compressor 0x $6,633x0.14 = $0
open-ended lines 0x $108x0.14 = $0
sample connections 0x $434x0.14 = $0
pressure relief devices 0 x $4,176 x 0.14 = $0
monitoring instrument 1 x $6,907 x 0.21 = $1,450
$1,450
b. Annualized initial monitoring
Annualized initial
monitoring cost
Component Initial monitoring cost CRF (Cost x CFR)
Gas valves 227.50 0.14 31.85
Liquid valves 1,190 0.14 166.66
Pump
pump 49.00 0.14 6.86
replacement seals N/A 0.55 N/A
Flanges 3,850 0.14 539.00
TOTAL 744.37
c. Annualized initial repair costs
Annualized initial repair
Component Initial repair cost CRF cost (Cost x CFR)
Gas valves 233.41 0.14 18.63
Liquid valves 696.15 0.14 170.93
Pump
pump 1,058.40 0.14 148.12
replacement seals 401.73 0.55 220.95
Flanges 363.82 0.14 50.93
TOTAL 609.62




2. Direct annual costs

a. Annual maintenance charges

monitoring instrument 1 x $4,548 = $0
compressor 0.05x $0 = $0
pressure relief devices 0.05 x $0 = $0
open-ended lines 0.05 x $0 = $0
sampling connections 0.05 x $0 = $0
pump replacement seals 12.6 x $191 = $2,406.60
$2,406.60

b. Annual miscellaneous charges

monitoring instrument  0.04 x $6,907 = $276

compressor 0.04 x $0 = $0

pressure relief devices 0.04 x $0 = $0

open-ended lines 0.04 x $0 = $0

sampling connections 0.04 x $0 = $0

pump replacement seals 0.80 x $401.10 = $1,925.28

$2,201.28
¢. Annual labor charges
Annual monitoring labor
No. of Cost
monitorings | (# comp. x Annual monitoring
Component No. components per year $2.00)2 cost (Cost x 1.4)
Gas valves 65 4 520 728.00
Liquid valves 340 4 2,720.00 3,808.00
Pump 14
pump 12 336.00 470.40
visual monitoring? 52 136.50 191.10

Flanges 1,100 1 2,200 3,080.00
Pressure relief device 0 1 0 0
TOTAL 8,277.50

aNot applicable to visual monitoring of pumps.
Annual monitoring cost for visually monitoring pumps is equal to the number of pumps, times 52 monitorings
per year, times 30 seconds per pump, divided by 3,600 seconds per hour, times a labor cost of $22.50 per

hour.




Annual repair labor

Annual
No. of No. of Fraction Hour repair
No. leak monitorings | require per Cost cost (Cost
Component components | frequency per year repair repair (x $22.50) x 1.4)
Gas valves 65 0.02 4 0.25 4 117.00 81.90
Liquid . 340 0.02 4 0.25 4 612.00 428.40
valves
Pump 14
pump 0.10 12 0.75 16 4,536.00 | 6,350.40
Flanges 1,100 0.05 1 0.25 2 6189.75 173.25
TOTAL 7,033.95

Annual labor charges = monitoring labor + repair labor

3. Product recovery credit

= $8,277.50 + 7,033.95
= $15,311.45

emission reduction = 10.20 Mg (Estimated in the Environmental Impacts memo)
recovery credit = $1,250/Mg

10.20 Mg x $1,250/Mg = $12,750 credit

4. Calculation of total annual cost

annualized equipment

annualized initial monitoring

annualized initial repair

annual maintenance charges
annual miscellaneous charges

+ annual labor charges
- product recovery credit

TOTAL ANNUAL COST

1,450.47
744.37
609.62

2,406.60

2,201.28

15,311.45
12,750.00

9,973.79




ATTACHMENT E

Costs and Cost Effectiveness Table for the Process Vent
MACT Floor for New Sources
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ATTACHMENT F

Costs and Cost Effectiveness Table for the Storage Tank
MACT Floor for New Sources






S01'ssy

80'L 16 oL £90'v6p 096'€59 9
008'vZe §2T0 6v5'0 650 5220 $2e0 650 650 hL'el LyV'EL  $89'8S $89°'8S ) az za
00v'veE L0€°0 ¥28°0 980 L0€0 L1150 ¥Z8'0 9.8°0 155201 1G6'20L  8¥S'6LZ 8¥S'6LZ ) gae 20
00v'veC L0€°0 ¥28°0 980 L0€0 IS0 ¥Z8'0 9180 165201 1G5'20L 85’61 8bS'61Z 1 ge 19
SUON SUON 29
SUON BUoN 19
00¥'668 0800 LET0 1920 0800 1510 LET0 1920 8E6'LL 8€6'LL  090'ZS 090'2S 3 al v
00¥'668 0800 LET0 1920 0800 1510 LETO 1920 SE6°LL 8E€6'LL  090'ZS 090'2S ! a v
00t'668 0800 LET0 1920 0800 1510 LETO 1920 8€6°'LL 8e6'L.  090'ZS 090'2S b a (A
oW/$ WAON JADN AN JABN LT 1A/BN IABN NS 'OVL .73 W oL $ Sjapowl "oN jue}  jueld
.mww:w>_~00t0 .:O_uo:voh .w:o_wm_EO .w:o_wm__.:o uononpail 100y} je suoissjwe suoissiwe apimuolieN ._OgE apmuolieN ._OvOE |oPoN
}sod uolssiwe dvH dvH uoissiwe  suoissiwe dvH dvH Jad 1ed
[T LYo |ejuawaioul aulleseq  pajjojuosun |ejuswaiou] dvH euljeseg  pajjonuooun oVl 104
OpIMUOIEN  SpIMUOlEN  8piMuolieN
STX LSOMINLSASHINV.LSWIHOOWLOIrOdd 4 ‘T4 dVHS3AN Ivd
SHNVL FOVHOLS H04 S1S00 HOO0Td LOVIA 303N0S M3N
spcisomeuls L6/L/S







ATTACHMENT G

Costs and Cost Effectiveness Table for the Wastewater
Regulatory Alternative 2 for New Sources
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ATTACHMENT H

Costs and Cost Effectiveness Table for the Equipment
Leak MACT Floor for New Sources
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